This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvop.2 | |- G = ( +v ` U ) |
|
| nvop.4 | |- S = ( .sOLD ` U ) |
||
| nvop.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvop | |- ( U e. NrmCVec -> U = <. <. G , S >. , N >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvop.2 | |- G = ( +v ` U ) |
|
| 2 | nvop.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nvop.6 | |- N = ( normCV ` U ) |
|
| 4 | nvrel | |- Rel NrmCVec |
|
| 5 | 1st2nd | |- ( ( Rel NrmCVec /\ U e. NrmCVec ) -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) |
|
| 6 | 4 5 | mpan | |- ( U e. NrmCVec -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) |
| 7 | 3 | nmcvfval | |- N = ( 2nd ` U ) |
| 8 | 7 | opeq2i | |- <. ( 1st ` U ) , N >. = <. ( 1st ` U ) , ( 2nd ` U ) >. |
| 9 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
| 10 | 9 1 2 | nvvop | |- ( U e. NrmCVec -> ( 1st ` U ) = <. G , S >. ) |
| 11 | 10 | opeq1d | |- ( U e. NrmCVec -> <. ( 1st ` U ) , N >. = <. <. G , S >. , N >. ) |
| 12 | 8 11 | eqtr3id | |- ( U e. NrmCVec -> <. ( 1st ` U ) , ( 2nd ` U ) >. = <. <. G , S >. , N >. ) |
| 13 | 6 12 | eqtrd | |- ( U e. NrmCVec -> U = <. <. G , S >. , N >. ) |