This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmscaf | |- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 1 2 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | 1 4 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 6 | eqid | |- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
|
| 7 | 3 5 6 | plusffval | |- ( +f ` ( mulGrp ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) |
| 8 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 9 | rlmsca2 | |- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 10 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 11 | 10 2 | strfvi | |- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 12 | eqid | |- ( .sf ` ( ringLMod ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
|
| 13 | rlmvsca | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
|
| 14 | 8 9 11 12 13 | scaffval | |- ( .sf ` ( ringLMod ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) |
| 15 | 7 14 | eqtr4i | |- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |