This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmsca2 | |- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi | |- ( R e. _V -> ( _I ` R ) = R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 2 | ressid | |- ( R e. _V -> ( R |`s ( Base ` R ) ) = R ) |
| 4 | 1 3 | eqtr4d | |- ( R e. _V -> ( _I ` R ) = ( R |`s ( Base ` R ) ) ) |
| 5 | fvprc | |- ( -. R e. _V -> ( _I ` R ) = (/) ) |
|
| 6 | reldmress | |- Rel dom |`s |
|
| 7 | 6 | ovprc1 | |- ( -. R e. _V -> ( R |`s ( Base ` R ) ) = (/) ) |
| 8 | 5 7 | eqtr4d | |- ( -. R e. _V -> ( _I ` R ) = ( R |`s ( Base ` R ) ) ) |
| 9 | 4 8 | pm2.61i | |- ( _I ` R ) = ( R |`s ( Base ` R ) ) |
| 10 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
| 11 | 10 | a1i | |- ( T. -> ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) ) |
| 12 | ssidd | |- ( T. -> ( Base ` R ) C_ ( Base ` R ) ) |
|
| 13 | 11 12 | srasca | |- ( T. -> ( R |`s ( Base ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) ) |
| 14 | 13 | mptru | |- ( R |`s ( Base ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
| 15 | 9 14 | eqtri | |- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |