This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istrg.1 | |- M = ( mulGrp ` R ) |
|
| Assertion | istrg | |- ( R e. TopRing <-> ( R e. TopGrp /\ R e. Ring /\ M e. TopMnd ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | |- M = ( mulGrp ` R ) |
|
| 2 | elin | |- ( R e. ( TopGrp i^i Ring ) <-> ( R e. TopGrp /\ R e. Ring ) ) |
|
| 3 | 2 | anbi1i | |- ( ( R e. ( TopGrp i^i Ring ) /\ M e. TopMnd ) <-> ( ( R e. TopGrp /\ R e. Ring ) /\ M e. TopMnd ) ) |
| 4 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( r = R -> ( mulGrp ` r ) = M ) |
| 6 | 5 | eleq1d | |- ( r = R -> ( ( mulGrp ` r ) e. TopMnd <-> M e. TopMnd ) ) |
| 7 | df-trg | |- TopRing = { r e. ( TopGrp i^i Ring ) | ( mulGrp ` r ) e. TopMnd } |
|
| 8 | 6 7 | elrab2 | |- ( R e. TopRing <-> ( R e. ( TopGrp i^i Ring ) /\ M e. TopMnd ) ) |
| 9 | df-3an | |- ( ( R e. TopGrp /\ R e. Ring /\ M e. TopMnd ) <-> ( ( R e. TopGrp /\ R e. Ring ) /\ M e. TopMnd ) ) |
|
| 10 | 3 8 9 | 3bitr4i | |- ( R e. TopRing <-> ( R e. TopGrp /\ R e. Ring /\ M e. TopMnd ) ) |