This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | binom2.1 | |- A e. CC |
|
| binom2.2 | |- B e. CC |
||
| Assertion | binom2i | |- ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binom2.1 | |- A e. CC |
|
| 2 | binom2.2 | |- B e. CC |
|
| 3 | 1 2 | addcli | |- ( A + B ) e. CC |
| 4 | 3 1 2 | adddii | |- ( ( A + B ) x. ( A + B ) ) = ( ( ( A + B ) x. A ) + ( ( A + B ) x. B ) ) |
| 5 | 1 2 1 | adddiri | |- ( ( A + B ) x. A ) = ( ( A x. A ) + ( B x. A ) ) |
| 6 | 2 1 | mulcomi | |- ( B x. A ) = ( A x. B ) |
| 7 | 6 | oveq2i | |- ( ( A x. A ) + ( B x. A ) ) = ( ( A x. A ) + ( A x. B ) ) |
| 8 | 5 7 | eqtri | |- ( ( A + B ) x. A ) = ( ( A x. A ) + ( A x. B ) ) |
| 9 | 1 2 2 | adddiri | |- ( ( A + B ) x. B ) = ( ( A x. B ) + ( B x. B ) ) |
| 10 | 8 9 | oveq12i | |- ( ( ( A + B ) x. A ) + ( ( A + B ) x. B ) ) = ( ( ( A x. A ) + ( A x. B ) ) + ( ( A x. B ) + ( B x. B ) ) ) |
| 11 | 1 1 | mulcli | |- ( A x. A ) e. CC |
| 12 | 1 2 | mulcli | |- ( A x. B ) e. CC |
| 13 | 11 12 | addcli | |- ( ( A x. A ) + ( A x. B ) ) e. CC |
| 14 | 2 2 | mulcli | |- ( B x. B ) e. CC |
| 15 | 13 12 14 | addassi | |- ( ( ( ( A x. A ) + ( A x. B ) ) + ( A x. B ) ) + ( B x. B ) ) = ( ( ( A x. A ) + ( A x. B ) ) + ( ( A x. B ) + ( B x. B ) ) ) |
| 16 | 11 12 12 | addassi | |- ( ( ( A x. A ) + ( A x. B ) ) + ( A x. B ) ) = ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) |
| 17 | 16 | oveq1i | |- ( ( ( ( A x. A ) + ( A x. B ) ) + ( A x. B ) ) + ( B x. B ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 18 | 10 15 17 | 3eqtr2i | |- ( ( ( A + B ) x. A ) + ( ( A + B ) x. B ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 19 | 4 18 | eqtri | |- ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 20 | 3 | sqvali | |- ( ( A + B ) ^ 2 ) = ( ( A + B ) x. ( A + B ) ) |
| 21 | 1 | sqvali | |- ( A ^ 2 ) = ( A x. A ) |
| 22 | 12 | 2timesi | |- ( 2 x. ( A x. B ) ) = ( ( A x. B ) + ( A x. B ) ) |
| 23 | 21 22 | oveq12i | |- ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) = ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) |
| 24 | 2 | sqvali | |- ( B ^ 2 ) = ( B x. B ) |
| 25 | 23 24 | oveq12i | |- ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) = ( ( ( A x. A ) + ( ( A x. B ) + ( A x. B ) ) ) + ( B x. B ) ) |
| 26 | 19 20 25 | 3eqtr4i | |- ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) |