This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem8.1 | |- A e. ~H |
|
| normlem8.2 | |- B e. ~H |
||
| normlem8.3 | |- C e. ~H |
||
| normlem8.4 | |- D e. ~H |
||
| Assertion | normlem8 | |- ( ( A +h B ) .ih ( C +h D ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) + ( ( A .ih D ) + ( B .ih C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem8.1 | |- A e. ~H |
|
| 2 | normlem8.2 | |- B e. ~H |
|
| 3 | normlem8.3 | |- C e. ~H |
|
| 4 | normlem8.4 | |- D e. ~H |
|
| 5 | his7 | |- ( ( A e. ~H /\ C e. ~H /\ D e. ~H ) -> ( A .ih ( C +h D ) ) = ( ( A .ih C ) + ( A .ih D ) ) ) |
|
| 6 | 1 3 4 5 | mp3an | |- ( A .ih ( C +h D ) ) = ( ( A .ih C ) + ( A .ih D ) ) |
| 7 | his7 | |- ( ( B e. ~H /\ C e. ~H /\ D e. ~H ) -> ( B .ih ( C +h D ) ) = ( ( B .ih C ) + ( B .ih D ) ) ) |
|
| 8 | 2 3 4 7 | mp3an | |- ( B .ih ( C +h D ) ) = ( ( B .ih C ) + ( B .ih D ) ) |
| 9 | 6 8 | oveq12i | |- ( ( A .ih ( C +h D ) ) + ( B .ih ( C +h D ) ) ) = ( ( ( A .ih C ) + ( A .ih D ) ) + ( ( B .ih C ) + ( B .ih D ) ) ) |
| 10 | 3 4 | hvaddcli | |- ( C +h D ) e. ~H |
| 11 | ax-his2 | |- ( ( A e. ~H /\ B e. ~H /\ ( C +h D ) e. ~H ) -> ( ( A +h B ) .ih ( C +h D ) ) = ( ( A .ih ( C +h D ) ) + ( B .ih ( C +h D ) ) ) ) |
|
| 12 | 1 2 10 11 | mp3an | |- ( ( A +h B ) .ih ( C +h D ) ) = ( ( A .ih ( C +h D ) ) + ( B .ih ( C +h D ) ) ) |
| 13 | 1 3 | hicli | |- ( A .ih C ) e. CC |
| 14 | 2 4 | hicli | |- ( B .ih D ) e. CC |
| 15 | 1 4 | hicli | |- ( A .ih D ) e. CC |
| 16 | 2 3 | hicli | |- ( B .ih C ) e. CC |
| 17 | 13 14 15 16 | add42i | |- ( ( ( A .ih C ) + ( B .ih D ) ) + ( ( A .ih D ) + ( B .ih C ) ) ) = ( ( ( A .ih C ) + ( A .ih D ) ) + ( ( B .ih C ) + ( B .ih D ) ) ) |
| 18 | 9 12 17 | 3eqtr4i | |- ( ( A +h B ) .ih ( C +h D ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) + ( ( A .ih D ) + ( B .ih C ) ) ) |