This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub4 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - C ) = ( A - ( B + C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nppcan2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B + C ) ) + C ) = ( A - B ) ) |
|
| 2 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 3 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 4 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
| 6 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 7 | 3 6 | addcld | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
| 8 | subcl | |- ( ( A e. CC /\ ( B + C ) e. CC ) -> ( A - ( B + C ) ) e. CC ) |
|
| 9 | 2 7 8 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B + C ) ) e. CC ) |
| 10 | subadd2 | |- ( ( ( A - B ) e. CC /\ C e. CC /\ ( A - ( B + C ) ) e. CC ) -> ( ( ( A - B ) - C ) = ( A - ( B + C ) ) <-> ( ( A - ( B + C ) ) + C ) = ( A - B ) ) ) |
|
| 11 | 5 6 9 10 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) = ( A - ( B + C ) ) <-> ( ( A - ( B + C ) ) + C ) = ( A - B ) ) ) |
| 12 | 1 11 | mpbird | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - C ) = ( A - ( B + C ) ) ) |