This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpar.v | |- V = ( Base ` W ) |
|
| nmpar.p | |- .+ = ( +g ` W ) |
||
| nmpar.m | |- .- = ( -g ` W ) |
||
| nmpar.n | |- N = ( norm ` W ) |
||
| Assertion | nmpar | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpar.v | |- V = ( Base ` W ) |
|
| 2 | nmpar.p | |- .+ = ( +g ` W ) |
|
| 3 | nmpar.m | |- .- = ( -g ` W ) |
|
| 4 | nmpar.n | |- N = ( norm ` W ) |
|
| 5 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 8 | simp1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> W e. CPreHil ) |
|
| 9 | simp2 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> A e. V ) |
|
| 10 | simp3 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> B e. V ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 10 | nmparlem | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |