This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0blo.0 | |- Z = ( U 0op W ) |
|
| 0blo.7 | |- B = ( U BLnOp W ) |
||
| Assertion | 0blo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0blo.0 | |- Z = ( U 0op W ) |
|
| 2 | 0blo.7 | |- B = ( U BLnOp W ) |
|
| 3 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
| 4 | 1 3 | 0lno | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. ( U LnOp W ) ) |
| 5 | eqid | |- ( U normOpOLD W ) = ( U normOpOLD W ) |
|
| 6 | 5 1 | nmoo0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( ( U normOpOLD W ) ` Z ) = 0 ) |
| 7 | 0re | |- 0 e. RR |
|
| 8 | 6 7 | eqeltrdi | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( ( U normOpOLD W ) ` Z ) e. RR ) |
| 9 | 5 3 2 | isblo2 | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( Z e. B <-> ( Z e. ( U LnOp W ) /\ ( ( U normOpOLD W ) ` Z ) e. RR ) ) ) |
| 10 | 4 8 9 | mpbir2and | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. B ) |