This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcfnlb | |- ( ( T e. LinFn /\ T e. ContFn /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ T e. ContFn ) ) |
|
| 2 | fveq1 | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( T ` A ) = ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) |
|
| 3 | 2 | fveq2d | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( abs ` ( T ` A ) ) = ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) ) |
| 4 | fveq2 | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) ) |
|
| 5 | 4 | oveq1d | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) |
| 6 | 3 5 | breq12d | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) <-> ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) |
| 7 | 6 | imbi2d | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) ) |
| 8 | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
|
| 9 | 0cnfn | |- ( ~H X. { 0 } ) e. ContFn |
|
| 10 | elin | |- ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) |
|
| 11 | 8 9 10 | mpbir2an | |- ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) |
| 12 | 11 | elimel | |- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) |
| 13 | elin | |- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) ) |
|
| 14 | 12 13 | mpbi | |- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) |
| 15 | 14 | simpli | |- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn |
| 16 | 14 | simpri | |- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn |
| 17 | 15 16 | nmcfnlbi | |- ( A e. ~H -> ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) |
| 18 | 7 17 | dedth | |- ( T e. ( LinFn i^i ContFn ) -> ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
| 19 | 18 | imp | |- ( ( T e. ( LinFn i^i ContFn ) /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 20 | 1 19 | sylanbr | |- ( ( ( T e. LinFn /\ T e. ContFn ) /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 21 | 20 | 3impa | |- ( ( T e. LinFn /\ T e. ContFn /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |