This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfncon.1 | |- T e. LinFn |
|
| Assertion | lnfnconi | |- ( T e. ContFn <-> E. x e. RR A. y e. ~H ( abs ` ( T ` y ) ) <_ ( x x. ( normh ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncon.1 | |- T e. LinFn |
|
| 2 | nmcfnex | |- ( ( T e. LinFn /\ T e. ContFn ) -> ( normfn ` T ) e. RR ) |
|
| 3 | 1 2 | mpan | |- ( T e. ContFn -> ( normfn ` T ) e. RR ) |
| 4 | nmcfnlb | |- ( ( T e. LinFn /\ T e. ContFn /\ y e. ~H ) -> ( abs ` ( T ` y ) ) <_ ( ( normfn ` T ) x. ( normh ` y ) ) ) |
|
| 5 | 1 4 | mp3an1 | |- ( ( T e. ContFn /\ y e. ~H ) -> ( abs ` ( T ` y ) ) <_ ( ( normfn ` T ) x. ( normh ` y ) ) ) |
| 6 | 1 | lnfnfi | |- T : ~H --> CC |
| 7 | elcnfn | |- ( T e. ContFn <-> ( T : ~H --> CC /\ A. x e. ~H A. z e. RR+ E. y e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < z ) ) ) |
|
| 8 | 6 7 | mpbiran | |- ( T e. ContFn <-> A. x e. ~H A. z e. RR+ E. y e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < z ) ) |
| 9 | 6 | ffvelcdmi | |- ( y e. ~H -> ( T ` y ) e. CC ) |
| 10 | 9 | abscld | |- ( y e. ~H -> ( abs ` ( T ` y ) ) e. RR ) |
| 11 | 1 | lnfnsubi | |- ( ( w e. ~H /\ x e. ~H ) -> ( T ` ( w -h x ) ) = ( ( T ` w ) - ( T ` x ) ) ) |
| 12 | 3 5 8 10 11 | lnconi | |- ( T e. ContFn <-> E. x e. RR A. y e. ~H ( abs ` ( T ` y ) ) <_ ( x x. ( normh ` y ) ) ) |