This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcfnlb | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ) | |
| 2 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( normfn ‘ 𝑇 ) = ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 6 | 3 5 | breq12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
| 8 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 9 | 0cnfn | ⊢ ( ℋ × { 0 } ) ∈ ContFn | |
| 10 | elin | ⊢ ( ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) ↔ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( ℋ × { 0 } ) ∈ ContFn ) ) | |
| 11 | 8 9 10 | mpbir2an | ⊢ ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) |
| 12 | 11 | elimel | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) |
| 13 | elin | ⊢ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) ↔ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) ) | |
| 14 | 12 13 | mpbi | ⊢ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) |
| 15 | 14 | simpli | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 16 | 14 | simpri | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn |
| 17 | 15 16 | nmcfnlbi | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 18 | 7 17 | dedth | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 20 | 1 19 | sylanbr | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 21 | 20 | 3impa | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |