This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnfn | |- ( ~H X. { 0 } ) e. ContFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | 1 | fconst6 | |- ( ~H X. { 0 } ) : ~H --> CC |
| 3 | 1rp | |- 1 e. RR+ |
|
| 4 | c0ex | |- 0 e. _V |
|
| 5 | 4 | fvconst2 | |- ( w e. ~H -> ( ( ~H X. { 0 } ) ` w ) = 0 ) |
| 6 | 4 | fvconst2 | |- ( x e. ~H -> ( ( ~H X. { 0 } ) ` x ) = 0 ) |
| 7 | 5 6 | oveqan12rd | |- ( ( x e. ~H /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = ( 0 - 0 ) ) |
| 8 | 7 | adantlr | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = ( 0 - 0 ) ) |
| 9 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 10 | 8 9 | eqtrdi | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) = 0 ) |
| 11 | 10 | fveq2d | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) = ( abs ` 0 ) ) |
| 12 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 13 | 11 12 | eqtrdi | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) = 0 ) |
| 14 | rpgt0 | |- ( y e. RR+ -> 0 < y ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> 0 < y ) |
| 16 | 13 15 | eqbrtrd | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) |
| 17 | 16 | a1d | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
| 18 | 17 | ralrimiva | |- ( ( x e. ~H /\ y e. RR+ ) -> A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
| 19 | breq2 | |- ( z = 1 -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < 1 ) ) |
|
| 20 | 19 | rspceaimv | |- ( ( 1 e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
| 21 | 3 18 20 | sylancr | |- ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) |
| 22 | 21 | rgen2 | |- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) |
| 23 | elcnfn | |- ( ( ~H X. { 0 } ) e. ContFn <-> ( ( ~H X. { 0 } ) : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( ( ~H X. { 0 } ) ` w ) - ( ( ~H X. { 0 } ) ` x ) ) ) < y ) ) ) |
|
| 24 | 2 22 23 | mpbir2an | |- ( ~H X. { 0 } ) e. ContFn |