This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | 1 | fconst6 | |- ( ~H X. { 0 } ) : ~H --> CC |
| 3 | hvmulcl | |- ( ( x e. CC /\ y e. ~H ) -> ( x .h y ) e. ~H ) |
|
| 4 | hvaddcl | |- ( ( ( x .h y ) e. ~H /\ z e. ~H ) -> ( ( x .h y ) +h z ) e. ~H ) |
|
| 5 | 3 4 | sylan | |- ( ( ( x e. CC /\ y e. ~H ) /\ z e. ~H ) -> ( ( x .h y ) +h z ) e. ~H ) |
| 6 | c0ex | |- 0 e. _V |
|
| 7 | 6 | fvconst2 | |- ( ( ( x .h y ) +h z ) e. ~H -> ( ( ~H X. { 0 } ) ` ( ( x .h y ) +h z ) ) = 0 ) |
| 8 | 5 7 | syl | |- ( ( ( x e. CC /\ y e. ~H ) /\ z e. ~H ) -> ( ( ~H X. { 0 } ) ` ( ( x .h y ) +h z ) ) = 0 ) |
| 9 | 6 | fvconst2 | |- ( y e. ~H -> ( ( ~H X. { 0 } ) ` y ) = 0 ) |
| 10 | 9 | oveq2d | |- ( y e. ~H -> ( x x. ( ( ~H X. { 0 } ) ` y ) ) = ( x x. 0 ) ) |
| 11 | mul01 | |- ( x e. CC -> ( x x. 0 ) = 0 ) |
|
| 12 | 10 11 | sylan9eqr | |- ( ( x e. CC /\ y e. ~H ) -> ( x x. ( ( ~H X. { 0 } ) ` y ) ) = 0 ) |
| 13 | 6 | fvconst2 | |- ( z e. ~H -> ( ( ~H X. { 0 } ) ` z ) = 0 ) |
| 14 | 12 13 | oveqan12d | |- ( ( ( x e. CC /\ y e. ~H ) /\ z e. ~H ) -> ( ( x x. ( ( ~H X. { 0 } ) ` y ) ) + ( ( ~H X. { 0 } ) ` z ) ) = ( 0 + 0 ) ) |
| 15 | 00id | |- ( 0 + 0 ) = 0 |
|
| 16 | 14 15 | eqtrdi | |- ( ( ( x e. CC /\ y e. ~H ) /\ z e. ~H ) -> ( ( x x. ( ( ~H X. { 0 } ) ` y ) ) + ( ( ~H X. { 0 } ) ` z ) ) = 0 ) |
| 17 | 8 16 | eqtr4d | |- ( ( ( x e. CC /\ y e. ~H ) /\ z e. ~H ) -> ( ( ~H X. { 0 } ) ` ( ( x .h y ) +h z ) ) = ( ( x x. ( ( ~H X. { 0 } ) ` y ) ) + ( ( ~H X. { 0 } ) ` z ) ) ) |
| 18 | 17 | 3impa | |- ( ( x e. CC /\ y e. ~H /\ z e. ~H ) -> ( ( ~H X. { 0 } ) ` ( ( x .h y ) +h z ) ) = ( ( x x. ( ( ~H X. { 0 } ) ` y ) ) + ( ( ~H X. { 0 } ) ` z ) ) ) |
| 19 | 18 | rgen3 | |- A. x e. CC A. y e. ~H A. z e. ~H ( ( ~H X. { 0 } ) ` ( ( x .h y ) +h z ) ) = ( ( x x. ( ( ~H X. { 0 } ) ` y ) ) + ( ( ~H X. { 0 } ) ` z ) ) |
| 20 | ellnfn | |- ( ( ~H X. { 0 } ) e. LinFn <-> ( ( ~H X. { 0 } ) : ~H --> CC /\ A. x e. CC A. y e. ~H A. z e. ~H ( ( ~H X. { 0 } ) ` ( ( x .h y ) +h z ) ) = ( ( x x. ( ( ~H X. { 0 } ) ` y ) ) + ( ( ~H X. { 0 } ) ` z ) ) ) ) |
|
| 21 | 2 19 20 | mpbir2an | |- ( ~H X. { 0 } ) e. LinFn |