This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | |- X = U. J |
|
| Assertion | neiss2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | |- X = U. J |
|
| 2 | elfvdm | |- ( N e. ( ( nei ` J ) ` S ) -> S e. dom ( nei ` J ) ) |
|
| 3 | 2 | adantl | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S e. dom ( nei ` J ) ) |
| 4 | 1 | neif | |- ( J e. Top -> ( nei ` J ) Fn ~P X ) |
| 5 | 4 | fndmd | |- ( J e. Top -> dom ( nei ` J ) = ~P X ) |
| 6 | 5 | eleq2d | |- ( J e. Top -> ( S e. dom ( nei ` J ) <-> S e. ~P X ) ) |
| 7 | 6 | adantr | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> ( S e. dom ( nei ` J ) <-> S e. ~P X ) ) |
| 8 | 3 7 | mpbid | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S e. ~P X ) |
| 9 | 8 | elpwid | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ X ) |