This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class N is a neighborhood of S ". (Contributed by FL, 25-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | |- X = U. J |
|
| Assertion | isnei | |- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | |- X = U. J |
|
| 2 | 1 | neival | |- ( ( J e. Top /\ S C_ X ) -> ( ( nei ` J ) ` S ) = { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } ) |
| 3 | 2 | eleq2d | |- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> N e. { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } ) ) |
| 4 | sseq2 | |- ( v = N -> ( g C_ v <-> g C_ N ) ) |
|
| 5 | 4 | anbi2d | |- ( v = N -> ( ( S C_ g /\ g C_ v ) <-> ( S C_ g /\ g C_ N ) ) ) |
| 6 | 5 | rexbidv | |- ( v = N -> ( E. g e. J ( S C_ g /\ g C_ v ) <-> E. g e. J ( S C_ g /\ g C_ N ) ) ) |
| 7 | 6 | elrab | |- ( N e. { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } <-> ( N e. ~P X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) |
| 8 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 9 | elpw2g | |- ( X e. J -> ( N e. ~P X <-> N C_ X ) ) |
|
| 10 | 8 9 | syl | |- ( J e. Top -> ( N e. ~P X <-> N C_ X ) ) |
| 11 | 10 | anbi1d | |- ( J e. Top -> ( ( N e. ~P X /\ E. g e. J ( S C_ g /\ g C_ N ) ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 12 | 7 11 | bitrid | |- ( J e. Top -> ( N e. { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 13 | 12 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( N e. { v e. ~P X | E. g e. J ( S C_ g /\ g C_ v ) } <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |
| 14 | 3 13 | bitrd | |- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. g e. J ( S C_ g /\ g C_ N ) ) ) ) |