This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcnpi.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| txcnpi.2 | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| txcnpi.3 | |- ( ph -> F e. ( ( ( J tX K ) CnP L ) ` <. A , B >. ) ) |
||
| txcnpi.4 | |- ( ph -> U e. L ) |
||
| txcnpi.5 | |- ( ph -> A e. X ) |
||
| txcnpi.6 | |- ( ph -> B e. Y ) |
||
| txcnpi.7 | |- ( ph -> ( A F B ) e. U ) |
||
| Assertion | txcnpi | |- ( ph -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnpi.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | txcnpi.2 | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | txcnpi.3 | |- ( ph -> F e. ( ( ( J tX K ) CnP L ) ` <. A , B >. ) ) |
|
| 4 | txcnpi.4 | |- ( ph -> U e. L ) |
|
| 5 | txcnpi.5 | |- ( ph -> A e. X ) |
|
| 6 | txcnpi.6 | |- ( ph -> B e. Y ) |
|
| 7 | txcnpi.7 | |- ( ph -> ( A F B ) e. U ) |
|
| 8 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 9 | 8 7 | eqeltrrid | |- ( ph -> ( F ` <. A , B >. ) e. U ) |
| 10 | cnpimaex | |- ( ( F e. ( ( ( J tX K ) CnP L ) ` <. A , B >. ) /\ U e. L /\ ( F ` <. A , B >. ) e. U ) -> E. w e. ( J tX K ) ( <. A , B >. e. w /\ ( F " w ) C_ U ) ) |
|
| 11 | 3 4 9 10 | syl3anc | |- ( ph -> E. w e. ( J tX K ) ( <. A , B >. e. w /\ ( F " w ) C_ U ) ) |
| 12 | eqid | |- U. ( J tX K ) = U. ( J tX K ) |
|
| 13 | eqid | |- U. L = U. L |
|
| 14 | 12 13 | cnpf | |- ( F e. ( ( ( J tX K ) CnP L ) ` <. A , B >. ) -> F : U. ( J tX K ) --> U. L ) |
| 15 | 3 14 | syl | |- ( ph -> F : U. ( J tX K ) --> U. L ) |
| 16 | 15 | adantr | |- ( ( ph /\ w e. ( J tX K ) ) -> F : U. ( J tX K ) --> U. L ) |
| 17 | 16 | ffund | |- ( ( ph /\ w e. ( J tX K ) ) -> Fun F ) |
| 18 | elssuni | |- ( w e. ( J tX K ) -> w C_ U. ( J tX K ) ) |
|
| 19 | 15 | fdmd | |- ( ph -> dom F = U. ( J tX K ) ) |
| 20 | 19 | sseq2d | |- ( ph -> ( w C_ dom F <-> w C_ U. ( J tX K ) ) ) |
| 21 | 20 | biimpar | |- ( ( ph /\ w C_ U. ( J tX K ) ) -> w C_ dom F ) |
| 22 | 18 21 | sylan2 | |- ( ( ph /\ w e. ( J tX K ) ) -> w C_ dom F ) |
| 23 | funimass3 | |- ( ( Fun F /\ w C_ dom F ) -> ( ( F " w ) C_ U <-> w C_ ( `' F " U ) ) ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ( ph /\ w e. ( J tX K ) ) -> ( ( F " w ) C_ U <-> w C_ ( `' F " U ) ) ) |
| 25 | 24 | anbi2d | |- ( ( ph /\ w e. ( J tX K ) ) -> ( ( <. A , B >. e. w /\ ( F " w ) C_ U ) <-> ( <. A , B >. e. w /\ w C_ ( `' F " U ) ) ) ) |
| 26 | eltx | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( w e. ( J tX K ) <-> A. z e. w E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) ) ) |
|
| 27 | 1 2 26 | syl2anc | |- ( ph -> ( w e. ( J tX K ) <-> A. z e. w E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) ) ) |
| 28 | 27 | biimpa | |- ( ( ph /\ w e. ( J tX K ) ) -> A. z e. w E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) ) |
| 29 | eleq1 | |- ( z = <. A , B >. -> ( z e. ( u X. v ) <-> <. A , B >. e. ( u X. v ) ) ) |
|
| 30 | 29 | anbi1d | |- ( z = <. A , B >. -> ( ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) <-> ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) ) ) |
| 31 | 30 | 2rexbidv | |- ( z = <. A , B >. -> ( E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) <-> E. u e. J E. v e. K ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) ) ) |
| 32 | 31 | rspccv | |- ( A. z e. w E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) -> ( <. A , B >. e. w -> E. u e. J E. v e. K ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) ) ) |
| 33 | sstr2 | |- ( ( u X. v ) C_ w -> ( w C_ ( `' F " U ) -> ( u X. v ) C_ ( `' F " U ) ) ) |
|
| 34 | 33 | com12 | |- ( w C_ ( `' F " U ) -> ( ( u X. v ) C_ w -> ( u X. v ) C_ ( `' F " U ) ) ) |
| 35 | 34 | anim2d | |- ( w C_ ( `' F " U ) -> ( ( ( A e. u /\ B e. v ) /\ ( u X. v ) C_ w ) -> ( ( A e. u /\ B e. v ) /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 36 | opelxp | |- ( <. A , B >. e. ( u X. v ) <-> ( A e. u /\ B e. v ) ) |
|
| 37 | 36 | anbi1i | |- ( ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) <-> ( ( A e. u /\ B e. v ) /\ ( u X. v ) C_ w ) ) |
| 38 | df-3an | |- ( ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) <-> ( ( A e. u /\ B e. v ) /\ ( u X. v ) C_ ( `' F " U ) ) ) |
|
| 39 | 35 37 38 | 3imtr4g | |- ( w C_ ( `' F " U ) -> ( ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) -> ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 40 | 39 | reximdv | |- ( w C_ ( `' F " U ) -> ( E. v e. K ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) -> E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 41 | 40 | reximdv | |- ( w C_ ( `' F " U ) -> ( E. u e. J E. v e. K ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 42 | 41 | com12 | |- ( E. u e. J E. v e. K ( <. A , B >. e. ( u X. v ) /\ ( u X. v ) C_ w ) -> ( w C_ ( `' F " U ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 43 | 32 42 | syl6 | |- ( A. z e. w E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) -> ( <. A , B >. e. w -> ( w C_ ( `' F " U ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) ) |
| 44 | 43 | impd | |- ( A. z e. w E. u e. J E. v e. K ( z e. ( u X. v ) /\ ( u X. v ) C_ w ) -> ( ( <. A , B >. e. w /\ w C_ ( `' F " U ) ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 45 | 28 44 | syl | |- ( ( ph /\ w e. ( J tX K ) ) -> ( ( <. A , B >. e. w /\ w C_ ( `' F " U ) ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 46 | 25 45 | sylbid | |- ( ( ph /\ w e. ( J tX K ) ) -> ( ( <. A , B >. e. w /\ ( F " w ) C_ U ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 47 | 46 | rexlimdva | |- ( ph -> ( E. w e. ( J tX K ) ( <. A , B >. e. w /\ ( F " w ) C_ U ) -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) ) |
| 48 | 11 47 | mpd | |- ( ph -> E. u e. J E. v e. K ( A e. u /\ B e. v /\ ( u X. v ) C_ ( `' F " U ) ) ) |