This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modcyc | |- ( ( A e. RR /\ B e. RR+ /\ N e. ZZ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A mod B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 3 | remulcl | |- ( ( N e. RR /\ B e. RR ) -> ( N x. B ) e. RR ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( N e. ZZ /\ B e. RR+ ) -> ( N x. B ) e. RR ) |
| 5 | readdcl | |- ( ( A e. RR /\ ( N x. B ) e. RR ) -> ( A + ( N x. B ) ) e. RR ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. RR /\ ( N e. ZZ /\ B e. RR+ ) ) -> ( A + ( N x. B ) ) e. RR ) |
| 7 | 6 | 3impb | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( A + ( N x. B ) ) e. RR ) |
| 8 | simp3 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> B e. RR+ ) |
|
| 9 | modval | |- ( ( ( A + ( N x. B ) ) e. RR /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( ( A + ( N x. B ) ) - ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) ) ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( ( A + ( N x. B ) ) - ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) ) ) |
| 11 | recn | |- ( A e. RR -> A e. CC ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> A e. CC ) |
| 13 | 4 | recnd | |- ( ( N e. ZZ /\ B e. RR+ ) -> ( N x. B ) e. CC ) |
| 14 | 13 | 3adant1 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( N x. B ) e. CC ) |
| 15 | rpcnne0 | |- ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) |
|
| 16 | 15 | 3ad2ant3 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B e. CC /\ B =/= 0 ) ) |
| 17 | divdir | |- ( ( A e. CC /\ ( N x. B ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A + ( N x. B ) ) / B ) = ( ( A / B ) + ( ( N x. B ) / B ) ) ) |
|
| 18 | 12 14 16 17 | syl3anc | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) / B ) = ( ( A / B ) + ( ( N x. B ) / B ) ) ) |
| 19 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 20 | divcan4 | |- ( ( N e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( N x. B ) / B ) = N ) |
|
| 21 | 20 | 3expb | |- ( ( N e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( N x. B ) / B ) = N ) |
| 22 | 19 15 21 | syl2an | |- ( ( N e. ZZ /\ B e. RR+ ) -> ( ( N x. B ) / B ) = N ) |
| 23 | 22 | 3adant1 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( N x. B ) / B ) = N ) |
| 24 | 23 | oveq2d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A / B ) + ( ( N x. B ) / B ) ) = ( ( A / B ) + N ) ) |
| 25 | 18 24 | eqtrd | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) / B ) = ( ( A / B ) + N ) ) |
| 26 | 25 | fveq2d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( ( A + ( N x. B ) ) / B ) ) = ( |_ ` ( ( A / B ) + N ) ) ) |
| 27 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 28 | 27 | 3adant2 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 29 | simp2 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> N e. ZZ ) |
|
| 30 | fladdz | |- ( ( ( A / B ) e. RR /\ N e. ZZ ) -> ( |_ ` ( ( A / B ) + N ) ) = ( ( |_ ` ( A / B ) ) + N ) ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( ( A / B ) + N ) ) = ( ( |_ ` ( A / B ) ) + N ) ) |
| 32 | 26 31 | eqtrd | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( ( A + ( N x. B ) ) / B ) ) = ( ( |_ ` ( A / B ) ) + N ) ) |
| 33 | 32 | oveq2d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) = ( B x. ( ( |_ ` ( A / B ) ) + N ) ) ) |
| 34 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 35 | 34 | 3ad2ant3 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> B e. CC ) |
| 36 | reflcl | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 37 | 36 | recnd | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) |
| 38 | 27 37 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 39 | 38 | 3adant2 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 40 | 19 | 3ad2ant2 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> N e. CC ) |
| 41 | 35 39 40 | adddid | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( ( |_ ` ( A / B ) ) + N ) ) = ( ( B x. ( |_ ` ( A / B ) ) ) + ( B x. N ) ) ) |
| 42 | mulcom | |- ( ( N e. CC /\ B e. CC ) -> ( N x. B ) = ( B x. N ) ) |
|
| 43 | 19 34 42 | syl2an | |- ( ( N e. ZZ /\ B e. RR+ ) -> ( N x. B ) = ( B x. N ) ) |
| 44 | 43 | 3adant1 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( N x. B ) = ( B x. N ) ) |
| 45 | 44 | eqcomd | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. N ) = ( N x. B ) ) |
| 46 | 45 | oveq2d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( B x. ( |_ ` ( A / B ) ) ) + ( B x. N ) ) = ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) |
| 47 | 33 41 46 | 3eqtrd | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) = ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) |
| 48 | 47 | oveq2d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) - ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) ) = ( ( A + ( N x. B ) ) - ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) ) |
| 49 | 34 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 50 | 49 38 | mulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) |
| 51 | 50 | 3adant2 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) |
| 52 | 12 51 14 | pnpcan2d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) - ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 53 | 10 48 52 | 3eqtrd | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 54 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 55 | 54 | 3adant2 | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 56 | 53 55 | eqtr4d | |- ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A mod B ) ) |
| 57 | 56 | 3com23 | |- ( ( A e. RR /\ B e. RR+ /\ N e. ZZ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A mod B ) ) |