This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1modnnsub1 | |- ( M e. NN -> ( -u 1 mod M ) = ( M - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | nnrp | |- ( M e. NN -> M e. RR+ ) |
|
| 3 | negmod | |- ( ( 1 e. RR /\ M e. RR+ ) -> ( -u 1 mod M ) = ( ( M - 1 ) mod M ) ) |
|
| 4 | 1 2 3 | sylancr | |- ( M e. NN -> ( -u 1 mod M ) = ( ( M - 1 ) mod M ) ) |
| 5 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 6 | peano2rem | |- ( M e. RR -> ( M - 1 ) e. RR ) |
|
| 7 | 5 6 | syl | |- ( M e. NN -> ( M - 1 ) e. RR ) |
| 8 | nnm1ge0 | |- ( M e. NN -> 0 <_ ( M - 1 ) ) |
|
| 9 | 5 | ltm1d | |- ( M e. NN -> ( M - 1 ) < M ) |
| 10 | modid | |- ( ( ( ( M - 1 ) e. RR /\ M e. RR+ ) /\ ( 0 <_ ( M - 1 ) /\ ( M - 1 ) < M ) ) -> ( ( M - 1 ) mod M ) = ( M - 1 ) ) |
|
| 11 | 7 2 8 9 10 | syl22anc | |- ( M e. NN -> ( ( M - 1 ) mod M ) = ( M - 1 ) ) |
| 12 | 4 11 | eqtrd | |- ( M e. NN -> ( -u 1 mod M ) = ( M - 1 ) ) |