This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value is continuous. Alternate proof of abscncf . (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscncfALT | |- abs e. ( CC -cn-> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 2 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 3 | 1 2 | abscn | |- abs e. ( ( TopOpen ` CCfld ) Cn ( topGen ` ran (,) ) ) |
| 4 | ssid | |- CC C_ CC |
|
| 5 | ax-resscn | |- RR C_ CC |
|
| 6 | 1 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 7 | 6 | toponunii | |- CC = U. ( TopOpen ` CCfld ) |
| 8 | 7 | restid | |- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 9 | 6 8 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 10 | 9 | eqcomi | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 11 | 1 | tgioo2 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 12 | 1 10 11 | cncfcn | |- ( ( CC C_ CC /\ RR C_ CC ) -> ( CC -cn-> RR ) = ( ( TopOpen ` CCfld ) Cn ( topGen ` ran (,) ) ) ) |
| 13 | 4 5 12 | mp2an | |- ( CC -cn-> RR ) = ( ( TopOpen ` CCfld ) Cn ( topGen ` ran (,) ) ) |
| 14 | 3 13 | eleqtrri | |- abs e. ( CC -cn-> RR ) |