This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mvdco | |- dom ( ( F o. G ) \ _I ) C_ ( dom ( F \ _I ) u. dom ( G \ _I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inundif | |- ( ( G i^i _I ) u. ( G \ _I ) ) = G |
|
| 2 | 1 | coeq2i | |- ( F o. ( ( G i^i _I ) u. ( G \ _I ) ) ) = ( F o. G ) |
| 3 | coundi | |- ( F o. ( ( G i^i _I ) u. ( G \ _I ) ) ) = ( ( F o. ( G i^i _I ) ) u. ( F o. ( G \ _I ) ) ) |
|
| 4 | 2 3 | eqtr3i | |- ( F o. G ) = ( ( F o. ( G i^i _I ) ) u. ( F o. ( G \ _I ) ) ) |
| 5 | 4 | difeq1i | |- ( ( F o. G ) \ _I ) = ( ( ( F o. ( G i^i _I ) ) u. ( F o. ( G \ _I ) ) ) \ _I ) |
| 6 | difundir | |- ( ( ( F o. ( G i^i _I ) ) u. ( F o. ( G \ _I ) ) ) \ _I ) = ( ( ( F o. ( G i^i _I ) ) \ _I ) u. ( ( F o. ( G \ _I ) ) \ _I ) ) |
|
| 7 | 5 6 | eqtri | |- ( ( F o. G ) \ _I ) = ( ( ( F o. ( G i^i _I ) ) \ _I ) u. ( ( F o. ( G \ _I ) ) \ _I ) ) |
| 8 | 7 | dmeqi | |- dom ( ( F o. G ) \ _I ) = dom ( ( ( F o. ( G i^i _I ) ) \ _I ) u. ( ( F o. ( G \ _I ) ) \ _I ) ) |
| 9 | dmun | |- dom ( ( ( F o. ( G i^i _I ) ) \ _I ) u. ( ( F o. ( G \ _I ) ) \ _I ) ) = ( dom ( ( F o. ( G i^i _I ) ) \ _I ) u. dom ( ( F o. ( G \ _I ) ) \ _I ) ) |
|
| 10 | 8 9 | eqtri | |- dom ( ( F o. G ) \ _I ) = ( dom ( ( F o. ( G i^i _I ) ) \ _I ) u. dom ( ( F o. ( G \ _I ) ) \ _I ) ) |
| 11 | inss2 | |- ( G i^i _I ) C_ _I |
|
| 12 | coss2 | |- ( ( G i^i _I ) C_ _I -> ( F o. ( G i^i _I ) ) C_ ( F o. _I ) ) |
|
| 13 | 11 12 | ax-mp | |- ( F o. ( G i^i _I ) ) C_ ( F o. _I ) |
| 14 | cocnvcnv1 | |- ( `' `' F o. _I ) = ( F o. _I ) |
|
| 15 | relcnv | |- Rel `' `' F |
|
| 16 | coi1 | |- ( Rel `' `' F -> ( `' `' F o. _I ) = `' `' F ) |
|
| 17 | 15 16 | ax-mp | |- ( `' `' F o. _I ) = `' `' F |
| 18 | 14 17 | eqtr3i | |- ( F o. _I ) = `' `' F |
| 19 | cnvcnvss | |- `' `' F C_ F |
|
| 20 | 18 19 | eqsstri | |- ( F o. _I ) C_ F |
| 21 | 13 20 | sstri | |- ( F o. ( G i^i _I ) ) C_ F |
| 22 | ssdif | |- ( ( F o. ( G i^i _I ) ) C_ F -> ( ( F o. ( G i^i _I ) ) \ _I ) C_ ( F \ _I ) ) |
|
| 23 | dmss | |- ( ( ( F o. ( G i^i _I ) ) \ _I ) C_ ( F \ _I ) -> dom ( ( F o. ( G i^i _I ) ) \ _I ) C_ dom ( F \ _I ) ) |
|
| 24 | 21 22 23 | mp2b | |- dom ( ( F o. ( G i^i _I ) ) \ _I ) C_ dom ( F \ _I ) |
| 25 | difss | |- ( ( F o. ( G \ _I ) ) \ _I ) C_ ( F o. ( G \ _I ) ) |
|
| 26 | dmss | |- ( ( ( F o. ( G \ _I ) ) \ _I ) C_ ( F o. ( G \ _I ) ) -> dom ( ( F o. ( G \ _I ) ) \ _I ) C_ dom ( F o. ( G \ _I ) ) ) |
|
| 27 | 25 26 | ax-mp | |- dom ( ( F o. ( G \ _I ) ) \ _I ) C_ dom ( F o. ( G \ _I ) ) |
| 28 | dmcoss | |- dom ( F o. ( G \ _I ) ) C_ dom ( G \ _I ) |
|
| 29 | 27 28 | sstri | |- dom ( ( F o. ( G \ _I ) ) \ _I ) C_ dom ( G \ _I ) |
| 30 | unss12 | |- ( ( dom ( ( F o. ( G i^i _I ) ) \ _I ) C_ dom ( F \ _I ) /\ dom ( ( F o. ( G \ _I ) ) \ _I ) C_ dom ( G \ _I ) ) -> ( dom ( ( F o. ( G i^i _I ) ) \ _I ) u. dom ( ( F o. ( G \ _I ) ) \ _I ) ) C_ ( dom ( F \ _I ) u. dom ( G \ _I ) ) ) |
|
| 31 | 24 29 30 | mp2an | |- ( dom ( ( F o. ( G i^i _I ) ) \ _I ) u. dom ( ( F o. ( G \ _I ) ) \ _I ) ) C_ ( dom ( F \ _I ) u. dom ( G \ _I ) ) |
| 32 | 10 31 | eqsstri | |- dom ( ( F o. G ) \ _I ) C_ ( dom ( F \ _I ) u. dom ( G \ _I ) ) |