This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coi1 | |- ( Rel A -> ( A o. _I ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( A o. _I ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opelco | |- ( <. x , y >. e. ( A o. _I ) <-> E. z ( x _I z /\ z A y ) ) |
| 5 | vex | |- z e. _V |
|
| 6 | 5 | ideq | |- ( x _I z <-> x = z ) |
| 7 | equcom | |- ( x = z <-> z = x ) |
|
| 8 | 6 7 | bitri | |- ( x _I z <-> z = x ) |
| 9 | 8 | anbi1i | |- ( ( x _I z /\ z A y ) <-> ( z = x /\ z A y ) ) |
| 10 | 9 | exbii | |- ( E. z ( x _I z /\ z A y ) <-> E. z ( z = x /\ z A y ) ) |
| 11 | breq1 | |- ( z = x -> ( z A y <-> x A y ) ) |
|
| 12 | 11 | equsexvw | |- ( E. z ( z = x /\ z A y ) <-> x A y ) |
| 13 | 10 12 | bitri | |- ( E. z ( x _I z /\ z A y ) <-> x A y ) |
| 14 | 4 13 | bitri | |- ( <. x , y >. e. ( A o. _I ) <-> x A y ) |
| 15 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
| 16 | 14 15 | bitri | |- ( <. x , y >. e. ( A o. _I ) <-> <. x , y >. e. A ) |
| 17 | 16 | eqrelriv | |- ( ( Rel ( A o. _I ) /\ Rel A ) -> ( A o. _I ) = A ) |
| 18 | 1 17 | mpan | |- ( Rel A -> ( A o. _I ) = A ) |