This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coundi | |- ( A o. ( B u. C ) ) = ( ( A o. B ) u. ( A o. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopab | |- ( { <. x , y >. | E. z ( x B z /\ z A y ) } u. { <. x , y >. | E. z ( x C z /\ z A y ) } ) = { <. x , y >. | ( E. z ( x B z /\ z A y ) \/ E. z ( x C z /\ z A y ) ) } |
|
| 2 | brun | |- ( x ( B u. C ) z <-> ( x B z \/ x C z ) ) |
|
| 3 | 2 | anbi1i | |- ( ( x ( B u. C ) z /\ z A y ) <-> ( ( x B z \/ x C z ) /\ z A y ) ) |
| 4 | andir | |- ( ( ( x B z \/ x C z ) /\ z A y ) <-> ( ( x B z /\ z A y ) \/ ( x C z /\ z A y ) ) ) |
|
| 5 | 3 4 | bitri | |- ( ( x ( B u. C ) z /\ z A y ) <-> ( ( x B z /\ z A y ) \/ ( x C z /\ z A y ) ) ) |
| 6 | 5 | exbii | |- ( E. z ( x ( B u. C ) z /\ z A y ) <-> E. z ( ( x B z /\ z A y ) \/ ( x C z /\ z A y ) ) ) |
| 7 | 19.43 | |- ( E. z ( ( x B z /\ z A y ) \/ ( x C z /\ z A y ) ) <-> ( E. z ( x B z /\ z A y ) \/ E. z ( x C z /\ z A y ) ) ) |
|
| 8 | 6 7 | bitr2i | |- ( ( E. z ( x B z /\ z A y ) \/ E. z ( x C z /\ z A y ) ) <-> E. z ( x ( B u. C ) z /\ z A y ) ) |
| 9 | 8 | opabbii | |- { <. x , y >. | ( E. z ( x B z /\ z A y ) \/ E. z ( x C z /\ z A y ) ) } = { <. x , y >. | E. z ( x ( B u. C ) z /\ z A y ) } |
| 10 | 1 9 | eqtri | |- ( { <. x , y >. | E. z ( x B z /\ z A y ) } u. { <. x , y >. | E. z ( x C z /\ z A y ) } ) = { <. x , y >. | E. z ( x ( B u. C ) z /\ z A y ) } |
| 11 | df-co | |- ( A o. B ) = { <. x , y >. | E. z ( x B z /\ z A y ) } |
|
| 12 | df-co | |- ( A o. C ) = { <. x , y >. | E. z ( x C z /\ z A y ) } |
|
| 13 | 11 12 | uneq12i | |- ( ( A o. B ) u. ( A o. C ) ) = ( { <. x , y >. | E. z ( x B z /\ z A y ) } u. { <. x , y >. | E. z ( x C z /\ z A y ) } ) |
| 14 | df-co | |- ( A o. ( B u. C ) ) = { <. x , y >. | E. z ( x ( B u. C ) z /\ z A y ) } |
|
| 15 | 10 13 14 | 3eqtr4ri | |- ( A o. ( B u. C ) ) = ( ( A o. B ) u. ( A o. C ) ) |