This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crre | |- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 5 | 2 3 4 | sylancr | |- ( B e. RR -> ( _i x. B ) e. CC ) |
| 6 | addcl | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
|
| 7 | 1 5 6 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 8 | reval | |- ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) |
| 10 | cjcl | |- ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) |
|
| 11 | 7 10 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) |
| 12 | 7 11 | addcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) |
| 13 | 12 | halfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) |
| 14 | 1 | adantr | |- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 15 | recl | |- ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) |
|
| 16 | 7 15 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) |
| 17 | 9 16 | eqeltrrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. RR ) |
| 18 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 19 | 17 18 | resubcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR ) |
| 20 | 2 | a1i | |- ( ( A e. RR /\ B e. RR ) -> _i e. CC ) |
| 21 | 3 | adantl | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 22 | 2 21 4 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) |
| 23 | 7 11 | subcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) |
| 24 | 23 | halfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) |
| 25 | 20 22 24 | subdid | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
| 26 | 14 22 14 | pnpcand | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( _i x. B ) - A ) ) |
| 27 | 22 14 22 | pnpcan2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) = ( ( _i x. B ) - A ) ) |
| 28 | 26 27 | eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) ) |
| 29 | 28 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
| 30 | 14 14 | addcld | |- ( ( A e. RR /\ B e. RR ) -> ( A + A ) e. CC ) |
| 31 | 7 11 30 | addsubd | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
| 32 | 22 22 | addcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. B ) + ( _i x. B ) ) e. CC ) |
| 33 | 32 7 11 | subsubd | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) |
| 34 | 29 31 33 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
| 35 | 14 | 2timesd | |- ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) = ( A + A ) ) |
| 36 | 35 | oveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) ) |
| 37 | 22 | 2timesd | |- ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) = ( ( _i x. B ) + ( _i x. B ) ) ) |
| 38 | 37 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
| 39 | 34 36 38 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) |
| 40 | 39 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) |
| 41 | 2cn | |- 2 e. CC |
|
| 42 | mulcl | |- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
|
| 43 | 41 14 42 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) e. CC ) |
| 44 | 41 | a1i | |- ( ( A e. RR /\ B e. RR ) -> 2 e. CC ) |
| 45 | 2ne0 | |- 2 =/= 0 |
|
| 46 | 45 | a1i | |- ( ( A e. RR /\ B e. RR ) -> 2 =/= 0 ) |
| 47 | 12 43 44 46 | divsubdird | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) ) |
| 48 | mulcl | |- ( ( 2 e. CC /\ ( _i x. B ) e. CC ) -> ( 2 x. ( _i x. B ) ) e. CC ) |
|
| 49 | 41 22 48 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) e. CC ) |
| 50 | 49 23 44 46 | divsubdird | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 51 | 40 47 50 | 3eqtr3d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 52 | 14 44 46 | divcan3d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 53 | 52 | oveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) |
| 54 | 22 44 46 | divcan3d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) / 2 ) = ( _i x. B ) ) |
| 55 | 54 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 56 | 51 53 55 | 3eqtr3d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 57 | 56 | oveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
| 58 | 20 20 21 | mulassd | |- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) = ( _i x. ( _i x. B ) ) ) |
| 59 | 20 23 44 46 | divassd | |- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) |
| 60 | 58 59 | oveq12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) |
| 61 | 25 57 60 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) ) |
| 62 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 63 | neg1rr | |- -u 1 e. RR |
|
| 64 | 62 63 | eqeltri | |- ( _i x. _i ) e. RR |
| 65 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 66 | remulcl | |- ( ( ( _i x. _i ) e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) |
|
| 67 | 64 65 66 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) |
| 68 | cjth | |- ( ( A + ( _i x. B ) ) e. CC -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. RR /\ ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) ) |
|
| 69 | 68 | simprd | |- ( ( A + ( _i x. B ) ) e. CC -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) |
| 70 | 7 69 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) |
| 71 | 70 | rehalfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) e. RR ) |
| 72 | 67 71 | resubcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) e. RR ) |
| 73 | 61 72 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) |
| 74 | rimul | |- ( ( ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR /\ ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) |
|
| 75 | 19 73 74 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) |
| 76 | 13 14 75 | subeq0d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) = A ) |
| 77 | 9 76 | eqtrd | |- ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |