This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 20-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rereb | |- ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. CC /\ A e. RR ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 3 | reim0 | |- ( A e. RR -> ( Im ` A ) = 0 ) |
|
| 4 | 3 | oveq2d | |- ( A e. RR -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) ) |
| 5 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 6 | 4 5 | eqtrdi | |- ( A e. RR -> ( _i x. ( Im ` A ) ) = 0 ) |
| 7 | 6 | adantl | |- ( ( A e. CC /\ A e. RR ) -> ( _i x. ( Im ` A ) ) = 0 ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) ) |
| 9 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 10 | 9 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 11 | 10 | addridd | |- ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
| 12 | 11 | adantr | |- ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
| 13 | 2 8 12 | 3eqtrrd | |- ( ( A e. CC /\ A e. RR ) -> ( Re ` A ) = A ) |
| 14 | simpr | |- ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) = A ) |
|
| 15 | 9 | adantr | |- ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) e. RR ) |
| 16 | 14 15 | eqeltrrd | |- ( ( A e. CC /\ ( Re ` A ) = A ) -> A e. RR ) |
| 17 | 13 16 | impbida | |- ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |