This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submmulgcl.t | |- .xb = ( .g ` G ) |
|
| Assertion | submmulgcl | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submmulgcl.t | |- .xb = ( .g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | submrcl | |- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 5 | 2 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 6 | 3 | submcl | |- ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) e. S ) |
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | 7 | subm0cl | |- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) e. S ) |
| 9 | 2 1 3 4 5 6 7 8 | mulgnn0subcl | |- ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) e. S ) |