This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfeq3.m | |- ( ph -> M e. ZZ ) |
|
| seqfeq3.f | |- ( ( ph /\ x e. ( ZZ>= ` M ) ) -> ( F ` x ) e. S ) |
||
| seqfeq3.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
||
| seqfeq3.id | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( x Q y ) ) |
||
| Assertion | seqfeq3 | |- ( ph -> seq M ( .+ , F ) = seq M ( Q , F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfeq3.m | |- ( ph -> M e. ZZ ) |
|
| 2 | seqfeq3.f | |- ( ( ph /\ x e. ( ZZ>= ` M ) ) -> ( F ` x ) e. S ) |
|
| 3 | seqfeq3.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 4 | seqfeq3.id | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( x Q y ) ) |
|
| 5 | seqfn | |- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
|
| 6 | 1 5 | syl | |- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 7 | seqfn | |- ( M e. ZZ -> seq M ( Q , F ) Fn ( ZZ>= ` M ) ) |
|
| 8 | 1 7 | syl | |- ( ph -> seq M ( Q , F ) Fn ( ZZ>= ` M ) ) |
| 9 | simpr | |- ( ( ph /\ a e. ( ZZ>= ` M ) ) -> a e. ( ZZ>= ` M ) ) |
|
| 10 | simpll | |- ( ( ( ph /\ a e. ( ZZ>= ` M ) ) /\ x e. ( M ... a ) ) -> ph ) |
|
| 11 | elfzuz | |- ( x e. ( M ... a ) -> x e. ( ZZ>= ` M ) ) |
|
| 12 | 11 | adantl | |- ( ( ( ph /\ a e. ( ZZ>= ` M ) ) /\ x e. ( M ... a ) ) -> x e. ( ZZ>= ` M ) ) |
| 13 | 10 12 2 | syl2anc | |- ( ( ( ph /\ a e. ( ZZ>= ` M ) ) /\ x e. ( M ... a ) ) -> ( F ` x ) e. S ) |
| 14 | 3 | adantlr | |- ( ( ( ph /\ a e. ( ZZ>= ` M ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 15 | 4 | adantlr | |- ( ( ( ph /\ a e. ( ZZ>= ` M ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) = ( x Q y ) ) |
| 16 | 9 13 14 15 | seqfeq4 | |- ( ( ph /\ a e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) ` a ) = ( seq M ( Q , F ) ` a ) ) |
| 17 | 6 8 16 | eqfnfvd | |- ( ph -> seq M ( .+ , F ) = seq M ( Q , F ) ) |