This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| grpinvpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| grpinvpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| Assertion | grpinvpropd | |- ( ph -> ( invg ` K ) = ( invg ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | grpinvpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | grpinvpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | 1 2 3 | grpidpropd | |- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 5 | 4 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( 0g ` K ) = ( 0g ` L ) ) |
| 6 | 3 5 | eqeq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x ( +g ` K ) y ) = ( 0g ` K ) <-> ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 7 | 6 | anass1rs | |- ( ( ( ph /\ y e. B ) /\ x e. B ) -> ( ( x ( +g ` K ) y ) = ( 0g ` K ) <-> ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 8 | 7 | riotabidva | |- ( ( ph /\ y e. B ) -> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) = ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 9 | 8 | mpteq2dva | |- ( ph -> ( y e. B |-> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) = ( y e. B |-> ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 10 | 1 | riotaeqdv | |- ( ph -> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) = ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 11 | 1 10 | mpteq12dv | |- ( ph -> ( y e. B |-> ( iota_ x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) = ( y e. ( Base ` K ) |-> ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) ) |
| 12 | 2 | riotaeqdv | |- ( ph -> ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) = ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 13 | 2 12 | mpteq12dv | |- ( ph -> ( y e. B |-> ( iota_ x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) = ( y e. ( Base ` L ) |-> ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 14 | 9 11 13 | 3eqtr3d | |- ( ph -> ( y e. ( Base ` K ) |-> ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) = ( y e. ( Base ` L ) |-> ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 15 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 16 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 17 | eqid | |- ( 0g ` K ) = ( 0g ` K ) |
|
| 18 | eqid | |- ( invg ` K ) = ( invg ` K ) |
|
| 19 | 15 16 17 18 | grpinvfval | |- ( invg ` K ) = ( y e. ( Base ` K ) |-> ( iota_ x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 20 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 21 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 22 | eqid | |- ( 0g ` L ) = ( 0g ` L ) |
|
| 23 | eqid | |- ( invg ` L ) = ( invg ` L ) |
|
| 24 | 20 21 22 23 | grpinvfval | |- ( invg ` L ) = ( y e. ( Base ` L ) |-> ( iota_ x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 25 | 14 19 24 | 3eqtr4g | |- ( ph -> ( invg ` K ) = ( invg ` L ) ) |