This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgass.b | |- B = ( Base ` G ) |
|
| mulgass.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgassr | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( N x. M ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgass.b | |- B = ( Base ` G ) |
|
| 2 | mulgass.t | |- .x. = ( .g ` G ) |
|
| 3 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ X e. B ) -> N e. CC ) |
| 5 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ X e. B ) -> M e. CC ) |
| 7 | 4 6 | mulcomd | |- ( ( M e. ZZ /\ N e. ZZ /\ X e. B ) -> ( N x. M ) = ( M x. N ) ) |
| 8 | 7 | adantl | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( N x. M ) = ( M x. N ) ) |
| 9 | 8 | oveq1d | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( N x. M ) .x. X ) = ( ( M x. N ) .x. X ) ) |
| 10 | 1 2 | mulgass | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| 11 | 9 10 | eqtrd | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ X e. B ) ) -> ( ( N x. M ) .x. X ) = ( M .x. ( N .x. X ) ) ) |