This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs3lem | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) -> ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> A e. CC ) |
|
| 2 | simpllr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> B e. CC ) |
|
| 3 | 1 2 | subcld | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( A - B ) e. CC ) |
| 4 | abscl | |- ( ( A - B ) e. CC -> ( abs ` ( A - B ) ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) e. RR ) |
| 6 | simplrl | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> C e. CC ) |
|
| 7 | 1 6 | subcld | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( A - C ) e. CC ) |
| 8 | abscl | |- ( ( A - C ) e. CC -> ( abs ` ( A - C ) ) e. RR ) |
|
| 9 | 7 8 | syl | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - C ) ) e. RR ) |
| 10 | 6 2 | subcld | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( C - B ) e. CC ) |
| 11 | abscl | |- ( ( C - B ) e. CC -> ( abs ` ( C - B ) ) e. RR ) |
|
| 12 | 10 11 | syl | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( C - B ) ) e. RR ) |
| 13 | 9 12 | readdcld | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) e. RR ) |
| 14 | simplrr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> D e. RR ) |
|
| 15 | abs3dif | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
|
| 16 | 1 2 6 15 | syl3anc | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
| 17 | simprl | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - C ) ) < ( D / 2 ) ) |
|
| 18 | simprr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( C - B ) ) < ( D / 2 ) ) |
|
| 19 | 9 12 14 17 18 | lt2halvesd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) < D ) |
| 20 | 5 13 14 16 19 | lelttrd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) /\ ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) ) -> ( abs ` ( A - B ) ) < D ) |
| 21 | 20 | ex | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) -> ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D ) ) |