This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014) (Revised by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reccn2.t | |- T = ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) |
|
| Assertion | reccn2 | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reccn2.t | |- T = ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) |
|
| 2 | 1rp | |- 1 e. RR+ |
|
| 3 | simpl | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> A e. ( CC \ { 0 } ) ) |
|
| 4 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
| 5 | 3 4 | sylib | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> ( A e. CC /\ A =/= 0 ) ) |
| 6 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 7 | 5 6 | syl | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> ( abs ` A ) e. RR+ ) |
| 8 | rpmulcl | |- ( ( ( abs ` A ) e. RR+ /\ B e. RR+ ) -> ( ( abs ` A ) x. B ) e. RR+ ) |
|
| 9 | 7 8 | sylancom | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> ( ( abs ` A ) x. B ) e. RR+ ) |
| 10 | ifcl | |- ( ( 1 e. RR+ /\ ( ( abs ` A ) x. B ) e. RR+ ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) e. RR+ ) |
|
| 11 | 2 9 10 | sylancr | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) e. RR+ ) |
| 12 | 7 | rphalfcld | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> ( ( abs ` A ) / 2 ) e. RR+ ) |
| 13 | 11 12 | rpmulcld | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) e. RR+ ) |
| 14 | 1 13 | eqeltrid | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> T e. RR+ ) |
| 15 | 5 | adantr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( A e. CC /\ A =/= 0 ) ) |
| 16 | 15 | simpld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> A e. CC ) |
| 17 | simprl | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> z e. ( CC \ { 0 } ) ) |
|
| 18 | eldifsn | |- ( z e. ( CC \ { 0 } ) <-> ( z e. CC /\ z =/= 0 ) ) |
|
| 19 | 17 18 | sylib | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( z e. CC /\ z =/= 0 ) ) |
| 20 | 19 | simpld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> z e. CC ) |
| 21 | 16 20 | mulcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( A x. z ) e. CC ) |
| 22 | mulne0 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( z e. CC /\ z =/= 0 ) ) -> ( A x. z ) =/= 0 ) |
|
| 23 | 15 19 22 | syl2anc | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( A x. z ) =/= 0 ) |
| 24 | 16 20 21 23 | divsubdird | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( A - z ) / ( A x. z ) ) = ( ( A / ( A x. z ) ) - ( z / ( A x. z ) ) ) ) |
| 25 | 16 | mulridd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( A x. 1 ) = A ) |
| 26 | 25 | oveq1d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( A x. 1 ) / ( A x. z ) ) = ( A / ( A x. z ) ) ) |
| 27 | 1cnd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> 1 e. CC ) |
|
| 28 | divcan5 | |- ( ( 1 e. CC /\ ( z e. CC /\ z =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. 1 ) / ( A x. z ) ) = ( 1 / z ) ) |
|
| 29 | 27 19 15 28 | syl3anc | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( A x. 1 ) / ( A x. z ) ) = ( 1 / z ) ) |
| 30 | 26 29 | eqtr3d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( A / ( A x. z ) ) = ( 1 / z ) ) |
| 31 | 20 | mulridd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( z x. 1 ) = z ) |
| 32 | 20 16 | mulcomd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( z x. A ) = ( A x. z ) ) |
| 33 | 31 32 | oveq12d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( z x. 1 ) / ( z x. A ) ) = ( z / ( A x. z ) ) ) |
| 34 | divcan5 | |- ( ( 1 e. CC /\ ( A e. CC /\ A =/= 0 ) /\ ( z e. CC /\ z =/= 0 ) ) -> ( ( z x. 1 ) / ( z x. A ) ) = ( 1 / A ) ) |
|
| 35 | 27 15 19 34 | syl3anc | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( z x. 1 ) / ( z x. A ) ) = ( 1 / A ) ) |
| 36 | 33 35 | eqtr3d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( z / ( A x. z ) ) = ( 1 / A ) ) |
| 37 | 30 36 | oveq12d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( A / ( A x. z ) ) - ( z / ( A x. z ) ) ) = ( ( 1 / z ) - ( 1 / A ) ) ) |
| 38 | 24 37 | eqtrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( A - z ) / ( A x. z ) ) = ( ( 1 / z ) - ( 1 / A ) ) ) |
| 39 | 38 | fveq2d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( ( A - z ) / ( A x. z ) ) ) = ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) ) |
| 40 | 16 20 | subcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( A - z ) e. CC ) |
| 41 | 40 21 23 | absdivd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( ( A - z ) / ( A x. z ) ) ) = ( ( abs ` ( A - z ) ) / ( abs ` ( A x. z ) ) ) ) |
| 42 | 39 41 | eqtr3d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) = ( ( abs ` ( A - z ) ) / ( abs ` ( A x. z ) ) ) ) |
| 43 | 16 20 | abssubd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A - z ) ) = ( abs ` ( z - A ) ) ) |
| 44 | 20 16 | subcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( z - A ) e. CC ) |
| 45 | 44 | abscld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( z - A ) ) e. RR ) |
| 46 | 43 45 | eqeltrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A - z ) ) e. RR ) |
| 47 | 14 | adantr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> T e. RR+ ) |
| 48 | 47 | rpred | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> T e. RR ) |
| 49 | 21 | abscld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A x. z ) ) e. RR ) |
| 50 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 51 | 50 | ad2antlr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> B e. RR ) |
| 52 | 49 51 | remulcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` ( A x. z ) ) x. B ) e. RR ) |
| 53 | simprr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( z - A ) ) < T ) |
|
| 54 | 43 53 | eqbrtrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A - z ) ) < T ) |
| 55 | 9 | adantr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) x. B ) e. RR+ ) |
| 56 | 55 | rpred | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) x. B ) e. RR ) |
| 57 | 12 | adantr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) / 2 ) e. RR+ ) |
| 58 | 57 | rpred | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) / 2 ) e. RR ) |
| 59 | 56 58 | remulcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) x. B ) x. ( ( abs ` A ) / 2 ) ) e. RR ) |
| 60 | 1re | |- 1 e. RR |
|
| 61 | min2 | |- ( ( 1 e. RR /\ ( ( abs ` A ) x. B ) e. RR ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) <_ ( ( abs ` A ) x. B ) ) |
|
| 62 | 60 56 61 | sylancr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) <_ ( ( abs ` A ) x. B ) ) |
| 63 | 11 | adantr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) e. RR+ ) |
| 64 | 63 | rpred | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) e. RR ) |
| 65 | 64 56 57 | lemul1d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) <_ ( ( abs ` A ) x. B ) <-> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) <_ ( ( ( abs ` A ) x. B ) x. ( ( abs ` A ) / 2 ) ) ) ) |
| 66 | 62 65 | mpbid | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) <_ ( ( ( abs ` A ) x. B ) x. ( ( abs ` A ) / 2 ) ) ) |
| 67 | 1 66 | eqbrtrid | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> T <_ ( ( ( abs ` A ) x. B ) x. ( ( abs ` A ) / 2 ) ) ) |
| 68 | 20 | abscld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` z ) e. RR ) |
| 69 | 16 | abscld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` A ) e. RR ) |
| 70 | 69 | recnd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` A ) e. CC ) |
| 71 | 70 | 2halvesd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) / 2 ) + ( ( abs ` A ) / 2 ) ) = ( abs ` A ) ) |
| 72 | 69 68 | resubcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) - ( abs ` z ) ) e. RR ) |
| 73 | 16 20 | abs2difd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) - ( abs ` z ) ) <_ ( abs ` ( A - z ) ) ) |
| 74 | min1 | |- ( ( 1 e. RR /\ ( ( abs ` A ) x. B ) e. RR ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) <_ 1 ) |
|
| 75 | 60 56 74 | sylancr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) <_ 1 ) |
| 76 | 1red | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> 1 e. RR ) |
|
| 77 | 64 76 57 | lemul1d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) <_ 1 <-> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) <_ ( 1 x. ( ( abs ` A ) / 2 ) ) ) ) |
| 78 | 75 77 | mpbid | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( if ( 1 <_ ( ( abs ` A ) x. B ) , 1 , ( ( abs ` A ) x. B ) ) x. ( ( abs ` A ) / 2 ) ) <_ ( 1 x. ( ( abs ` A ) / 2 ) ) ) |
| 79 | 1 78 | eqbrtrid | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> T <_ ( 1 x. ( ( abs ` A ) / 2 ) ) ) |
| 80 | 58 | recnd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) / 2 ) e. CC ) |
| 81 | 80 | mullidd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( 1 x. ( ( abs ` A ) / 2 ) ) = ( ( abs ` A ) / 2 ) ) |
| 82 | 79 81 | breqtrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> T <_ ( ( abs ` A ) / 2 ) ) |
| 83 | 46 48 58 54 82 | ltletrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A - z ) ) < ( ( abs ` A ) / 2 ) ) |
| 84 | 72 46 58 73 83 | lelttrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) - ( abs ` z ) ) < ( ( abs ` A ) / 2 ) ) |
| 85 | 69 68 58 | ltsubadd2d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) - ( abs ` z ) ) < ( ( abs ` A ) / 2 ) <-> ( abs ` A ) < ( ( abs ` z ) + ( ( abs ` A ) / 2 ) ) ) ) |
| 86 | 84 85 | mpbid | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` A ) < ( ( abs ` z ) + ( ( abs ` A ) / 2 ) ) ) |
| 87 | 71 86 | eqbrtrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) / 2 ) + ( ( abs ` A ) / 2 ) ) < ( ( abs ` z ) + ( ( abs ` A ) / 2 ) ) ) |
| 88 | 58 68 58 | ltadd1d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) / 2 ) < ( abs ` z ) <-> ( ( ( abs ` A ) / 2 ) + ( ( abs ` A ) / 2 ) ) < ( ( abs ` z ) + ( ( abs ` A ) / 2 ) ) ) ) |
| 89 | 87 88 | mpbird | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` A ) / 2 ) < ( abs ` z ) ) |
| 90 | 58 68 55 89 | ltmul2dd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) x. B ) x. ( ( abs ` A ) / 2 ) ) < ( ( ( abs ` A ) x. B ) x. ( abs ` z ) ) ) |
| 91 | 16 20 | absmuld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A x. z ) ) = ( ( abs ` A ) x. ( abs ` z ) ) ) |
| 92 | 91 | oveq1d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` ( A x. z ) ) x. B ) = ( ( ( abs ` A ) x. ( abs ` z ) ) x. B ) ) |
| 93 | 68 | recnd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` z ) e. CC ) |
| 94 | 51 | recnd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> B e. CC ) |
| 95 | 70 93 94 | mul32d | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) x. ( abs ` z ) ) x. B ) = ( ( ( abs ` A ) x. B ) x. ( abs ` z ) ) ) |
| 96 | 92 95 | eqtrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` ( A x. z ) ) x. B ) = ( ( ( abs ` A ) x. B ) x. ( abs ` z ) ) ) |
| 97 | 90 96 | breqtrrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` A ) x. B ) x. ( ( abs ` A ) / 2 ) ) < ( ( abs ` ( A x. z ) ) x. B ) ) |
| 98 | 48 59 52 67 97 | lelttrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> T < ( ( abs ` ( A x. z ) ) x. B ) ) |
| 99 | 46 48 52 54 98 | lttrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A - z ) ) < ( ( abs ` ( A x. z ) ) x. B ) ) |
| 100 | 21 23 | absrpcld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( A x. z ) ) e. RR+ ) |
| 101 | 46 51 100 | ltdivmuld | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( ( abs ` ( A - z ) ) / ( abs ` ( A x. z ) ) ) < B <-> ( abs ` ( A - z ) ) < ( ( abs ` ( A x. z ) ) x. B ) ) ) |
| 102 | 99 101 | mpbird | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( ( abs ` ( A - z ) ) / ( abs ` ( A x. z ) ) ) < B ) |
| 103 | 42 102 | eqbrtrd | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ ( z e. ( CC \ { 0 } ) /\ ( abs ` ( z - A ) ) < T ) ) -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) |
| 104 | 103 | expr | |- ( ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) /\ z e. ( CC \ { 0 } ) ) -> ( ( abs ` ( z - A ) ) < T -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) ) |
| 105 | 104 | ralrimiva | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < T -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) ) |
| 106 | breq2 | |- ( y = T -> ( ( abs ` ( z - A ) ) < y <-> ( abs ` ( z - A ) ) < T ) ) |
|
| 107 | 106 | rspceaimv | |- ( ( T e. RR+ /\ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < T -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) ) |
| 108 | 14 105 107 | syl2anc | |- ( ( A e. ( CC \ { 0 } ) /\ B e. RR+ ) -> E. y e. RR+ A. z e. ( CC \ { 0 } ) ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( 1 / z ) - ( 1 / A ) ) ) < B ) ) |