This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzaddcl | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A + B ) e. Z[i] ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | |- ( A e. Z[i] -> A e. CC ) |
|
| 2 | gzcn | |- ( B e. Z[i] -> B e. CC ) |
|
| 3 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A + B ) e. CC ) |
| 5 | readd | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A + B ) ) = ( ( Re ` A ) + ( Re ` B ) ) ) |
|
| 6 | 1 2 5 | syl2an | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( Re ` ( A + B ) ) = ( ( Re ` A ) + ( Re ` B ) ) ) |
| 7 | elgz | |- ( A e. Z[i] <-> ( A e. CC /\ ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) |
|
| 8 | 7 | simp2bi | |- ( A e. Z[i] -> ( Re ` A ) e. ZZ ) |
| 9 | elgz | |- ( B e. Z[i] <-> ( B e. CC /\ ( Re ` B ) e. ZZ /\ ( Im ` B ) e. ZZ ) ) |
|
| 10 | 9 | simp2bi | |- ( B e. Z[i] -> ( Re ` B ) e. ZZ ) |
| 11 | zaddcl | |- ( ( ( Re ` A ) e. ZZ /\ ( Re ` B ) e. ZZ ) -> ( ( Re ` A ) + ( Re ` B ) ) e. ZZ ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( ( Re ` A ) + ( Re ` B ) ) e. ZZ ) |
| 13 | 6 12 | eqeltrd | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( Re ` ( A + B ) ) e. ZZ ) |
| 14 | imadd | |- ( ( A e. CC /\ B e. CC ) -> ( Im ` ( A + B ) ) = ( ( Im ` A ) + ( Im ` B ) ) ) |
|
| 15 | 1 2 14 | syl2an | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( Im ` ( A + B ) ) = ( ( Im ` A ) + ( Im ` B ) ) ) |
| 16 | 7 | simp3bi | |- ( A e. Z[i] -> ( Im ` A ) e. ZZ ) |
| 17 | 9 | simp3bi | |- ( B e. Z[i] -> ( Im ` B ) e. ZZ ) |
| 18 | zaddcl | |- ( ( ( Im ` A ) e. ZZ /\ ( Im ` B ) e. ZZ ) -> ( ( Im ` A ) + ( Im ` B ) ) e. ZZ ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( ( Im ` A ) + ( Im ` B ) ) e. ZZ ) |
| 20 | 15 19 | eqeltrd | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( Im ` ( A + B ) ) e. ZZ ) |
| 21 | elgz | |- ( ( A + B ) e. Z[i] <-> ( ( A + B ) e. CC /\ ( Re ` ( A + B ) ) e. ZZ /\ ( Im ` ( A + B ) ) e. ZZ ) ) |
|
| 22 | 4 13 20 21 | syl3anbrc | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A + B ) e. Z[i] ) |