This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzcjcl | |- ( A e. Z[i] -> ( * ` A ) e. Z[i] ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | |- ( A e. Z[i] -> A e. CC ) |
|
| 2 | 1 | cjcld | |- ( A e. Z[i] -> ( * ` A ) e. CC ) |
| 3 | 1 | recjd | |- ( A e. Z[i] -> ( Re ` ( * ` A ) ) = ( Re ` A ) ) |
| 4 | elgz | |- ( A e. Z[i] <-> ( A e. CC /\ ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) |
|
| 5 | 4 | simp2bi | |- ( A e. Z[i] -> ( Re ` A ) e. ZZ ) |
| 6 | 3 5 | eqeltrd | |- ( A e. Z[i] -> ( Re ` ( * ` A ) ) e. ZZ ) |
| 7 | 1 | imcjd | |- ( A e. Z[i] -> ( Im ` ( * ` A ) ) = -u ( Im ` A ) ) |
| 8 | 4 | simp3bi | |- ( A e. Z[i] -> ( Im ` A ) e. ZZ ) |
| 9 | 8 | znegcld | |- ( A e. Z[i] -> -u ( Im ` A ) e. ZZ ) |
| 10 | 7 9 | eqeltrd | |- ( A e. Z[i] -> ( Im ` ( * ` A ) ) e. ZZ ) |
| 11 | elgz | |- ( ( * ` A ) e. Z[i] <-> ( ( * ` A ) e. CC /\ ( Re ` ( * ` A ) ) e. ZZ /\ ( Im ` ( * ` A ) ) e. ZZ ) ) |
|
| 12 | 2 6 10 11 | syl3anbrc | |- ( A e. Z[i] -> ( * ` A ) e. Z[i] ) |