This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty intersection in a Moore space is realized by the base set. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclat.i | |- I = ( toInc ` C ) |
|
| mrelatglb.g | |- G = ( glb ` I ) |
||
| Assertion | mrelatglb0 | |- ( C e. ( Moore ` X ) -> ( G ` (/) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclat.i | |- I = ( toInc ` C ) |
|
| 2 | mrelatglb.g | |- G = ( glb ` I ) |
|
| 3 | eqid | |- ( le ` I ) = ( le ` I ) |
|
| 4 | 1 | ipobas | |- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
| 5 | 2 | a1i | |- ( C e. ( Moore ` X ) -> G = ( glb ` I ) ) |
| 6 | 1 | ipopos | |- I e. Poset |
| 7 | 6 | a1i | |- ( C e. ( Moore ` X ) -> I e. Poset ) |
| 8 | 0ss | |- (/) C_ C |
|
| 9 | 8 | a1i | |- ( C e. ( Moore ` X ) -> (/) C_ C ) |
| 10 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 11 | ral0 | |- A. x e. (/) X ( le ` I ) x |
|
| 12 | 11 | rspec | |- ( x e. (/) -> X ( le ` I ) x ) |
| 13 | 12 | adantl | |- ( ( C e. ( Moore ` X ) /\ x e. (/) ) -> X ( le ` I ) x ) |
| 14 | mress | |- ( ( C e. ( Moore ` X ) /\ y e. C ) -> y C_ X ) |
|
| 15 | 10 | adantr | |- ( ( C e. ( Moore ` X ) /\ y e. C ) -> X e. C ) |
| 16 | 1 3 | ipole | |- ( ( C e. ( Moore ` X ) /\ y e. C /\ X e. C ) -> ( y ( le ` I ) X <-> y C_ X ) ) |
| 17 | 15 16 | mpd3an3 | |- ( ( C e. ( Moore ` X ) /\ y e. C ) -> ( y ( le ` I ) X <-> y C_ X ) ) |
| 18 | 14 17 | mpbird | |- ( ( C e. ( Moore ` X ) /\ y e. C ) -> y ( le ` I ) X ) |
| 19 | 18 | 3adant3 | |- ( ( C e. ( Moore ` X ) /\ y e. C /\ A. x e. (/) y ( le ` I ) x ) -> y ( le ` I ) X ) |
| 20 | 3 4 5 7 9 10 13 19 | posglbdg | |- ( C e. ( Moore ` X ) -> ( G ` (/) ) = X ) |