This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ipopos.i | |- I = ( toInc ` F ) |
|
| Assertion | ipopos | |- I e. Poset |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipopos.i | |- I = ( toInc ` F ) |
|
| 2 | 1 | fvexi | |- I e. _V |
| 3 | 2 | a1i | |- ( F e. _V -> I e. _V ) |
| 4 | 1 | ipobas | |- ( F e. _V -> F = ( Base ` I ) ) |
| 5 | eqidd | |- ( F e. _V -> ( le ` I ) = ( le ` I ) ) |
|
| 6 | ssid | |- a C_ a |
|
| 7 | eqid | |- ( le ` I ) = ( le ` I ) |
|
| 8 | 1 7 | ipole | |- ( ( F e. _V /\ a e. F /\ a e. F ) -> ( a ( le ` I ) a <-> a C_ a ) ) |
| 9 | 8 | 3anidm23 | |- ( ( F e. _V /\ a e. F ) -> ( a ( le ` I ) a <-> a C_ a ) ) |
| 10 | 6 9 | mpbiri | |- ( ( F e. _V /\ a e. F ) -> a ( le ` I ) a ) |
| 11 | 1 7 | ipole | |- ( ( F e. _V /\ a e. F /\ b e. F ) -> ( a ( le ` I ) b <-> a C_ b ) ) |
| 12 | 1 7 | ipole | |- ( ( F e. _V /\ b e. F /\ a e. F ) -> ( b ( le ` I ) a <-> b C_ a ) ) |
| 13 | 12 | 3com23 | |- ( ( F e. _V /\ a e. F /\ b e. F ) -> ( b ( le ` I ) a <-> b C_ a ) ) |
| 14 | 11 13 | anbi12d | |- ( ( F e. _V /\ a e. F /\ b e. F ) -> ( ( a ( le ` I ) b /\ b ( le ` I ) a ) <-> ( a C_ b /\ b C_ a ) ) ) |
| 15 | simpl | |- ( ( a C_ b /\ b C_ a ) -> a C_ b ) |
|
| 16 | simpr | |- ( ( a C_ b /\ b C_ a ) -> b C_ a ) |
|
| 17 | 15 16 | eqssd | |- ( ( a C_ b /\ b C_ a ) -> a = b ) |
| 18 | 14 17 | biimtrdi | |- ( ( F e. _V /\ a e. F /\ b e. F ) -> ( ( a ( le ` I ) b /\ b ( le ` I ) a ) -> a = b ) ) |
| 19 | sstr | |- ( ( a C_ b /\ b C_ c ) -> a C_ c ) |
|
| 20 | 19 | a1i | |- ( ( F e. _V /\ ( a e. F /\ b e. F /\ c e. F ) ) -> ( ( a C_ b /\ b C_ c ) -> a C_ c ) ) |
| 21 | 11 | 3adant3r3 | |- ( ( F e. _V /\ ( a e. F /\ b e. F /\ c e. F ) ) -> ( a ( le ` I ) b <-> a C_ b ) ) |
| 22 | 1 7 | ipole | |- ( ( F e. _V /\ b e. F /\ c e. F ) -> ( b ( le ` I ) c <-> b C_ c ) ) |
| 23 | 22 | 3adant3r1 | |- ( ( F e. _V /\ ( a e. F /\ b e. F /\ c e. F ) ) -> ( b ( le ` I ) c <-> b C_ c ) ) |
| 24 | 21 23 | anbi12d | |- ( ( F e. _V /\ ( a e. F /\ b e. F /\ c e. F ) ) -> ( ( a ( le ` I ) b /\ b ( le ` I ) c ) <-> ( a C_ b /\ b C_ c ) ) ) |
| 25 | 1 7 | ipole | |- ( ( F e. _V /\ a e. F /\ c e. F ) -> ( a ( le ` I ) c <-> a C_ c ) ) |
| 26 | 25 | 3adant3r2 | |- ( ( F e. _V /\ ( a e. F /\ b e. F /\ c e. F ) ) -> ( a ( le ` I ) c <-> a C_ c ) ) |
| 27 | 20 24 26 | 3imtr4d | |- ( ( F e. _V /\ ( a e. F /\ b e. F /\ c e. F ) ) -> ( ( a ( le ` I ) b /\ b ( le ` I ) c ) -> a ( le ` I ) c ) ) |
| 28 | 3 4 5 10 18 27 | isposd | |- ( F e. _V -> I e. Poset ) |
| 29 | fvprc | |- ( -. F e. _V -> ( toInc ` F ) = (/) ) |
|
| 30 | 1 29 | eqtrid | |- ( -. F e. _V -> I = (/) ) |
| 31 | 0pos | |- (/) e. Poset |
|
| 32 | 30 31 | eqeltrdi | |- ( -. F e. _V -> I e. Poset ) |
| 33 | 28 32 | pm2.61i | |- I e. Poset |