This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreintcl | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> |^| S e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2g | |- ( C e. ( Moore ` X ) -> ( S e. ~P C <-> S C_ C ) ) |
|
| 2 | 1 | biimpar | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> S e. ~P C ) |
| 3 | 2 | 3adant3 | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S e. ~P C ) |
| 4 | ismre | |- ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |
|
| 5 | 4 | simp3bi | |- ( C e. ( Moore ` X ) -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) |
| 7 | simp3 | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S =/= (/) ) |
|
| 8 | neeq1 | |- ( s = S -> ( s =/= (/) <-> S =/= (/) ) ) |
|
| 9 | inteq | |- ( s = S -> |^| s = |^| S ) |
|
| 10 | 9 | eleq1d | |- ( s = S -> ( |^| s e. C <-> |^| S e. C ) ) |
| 11 | 8 10 | imbi12d | |- ( s = S -> ( ( s =/= (/) -> |^| s e. C ) <-> ( S =/= (/) -> |^| S e. C ) ) ) |
| 12 | 11 | rspcva | |- ( ( S e. ~P C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) -> ( S =/= (/) -> |^| S e. C ) ) |
| 13 | 12 | 3impia | |- ( ( S e. ~P C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) /\ S =/= (/) ) -> |^| S e. C ) |
| 14 | 3 6 7 13 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> |^| S e. C ) |