This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoval.i | |- I = ( toInc ` F ) |
|
| ipole.l | |- .<_ = ( le ` I ) |
||
| Assertion | ipole | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X .<_ Y <-> X C_ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoval.i | |- I = ( toInc ` F ) |
|
| 2 | ipole.l | |- .<_ = ( le ` I ) |
|
| 3 | preq12 | |- ( ( x = X /\ y = Y ) -> { x , y } = { X , Y } ) |
|
| 4 | 3 | sseq1d | |- ( ( x = X /\ y = Y ) -> ( { x , y } C_ F <-> { X , Y } C_ F ) ) |
| 5 | sseq12 | |- ( ( x = X /\ y = Y ) -> ( x C_ y <-> X C_ Y ) ) |
|
| 6 | 4 5 | anbi12d | |- ( ( x = X /\ y = Y ) -> ( ( { x , y } C_ F /\ x C_ y ) <-> ( { X , Y } C_ F /\ X C_ Y ) ) ) |
| 7 | eqid | |- { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } |
|
| 8 | 6 7 | brabga | |- ( ( X e. F /\ Y e. F ) -> ( X { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } Y <-> ( { X , Y } C_ F /\ X C_ Y ) ) ) |
| 9 | 8 | 3adant1 | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } Y <-> ( { X , Y } C_ F /\ X C_ Y ) ) ) |
| 10 | 1 | ipolerval | |- ( F e. V -> { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } = ( le ` I ) ) |
| 11 | 2 10 | eqtr4id | |- ( F e. V -> .<_ = { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } ) |
| 12 | 11 | breqd | |- ( F e. V -> ( X .<_ Y <-> X { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } Y ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X .<_ Y <-> X { <. x , y >. | ( { x , y } C_ F /\ x C_ y ) } Y ) ) |
| 14 | prssi | |- ( ( X e. F /\ Y e. F ) -> { X , Y } C_ F ) |
|
| 15 | 14 | 3adant1 | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> { X , Y } C_ F ) |
| 16 | 15 | biantrurd | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X C_ Y <-> ( { X , Y } C_ F /\ X C_ Y ) ) ) |
| 17 | 9 13 16 | 3bitr4d | |- ( ( F e. V /\ X e. F /\ Y e. F ) -> ( X .<_ Y <-> X C_ Y ) ) |