This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posglbdg.l | |- .<_ = ( le ` K ) |
|
| posglbdg.b | |- ( ph -> B = ( Base ` K ) ) |
||
| posglbdg.g | |- ( ph -> G = ( glb ` K ) ) |
||
| posglbdg.k | |- ( ph -> K e. Poset ) |
||
| posglbdg.s | |- ( ph -> S C_ B ) |
||
| posglbdg.t | |- ( ph -> T e. B ) |
||
| posglbdg.lb | |- ( ( ph /\ x e. S ) -> T .<_ x ) |
||
| posglbdg.gt | |- ( ( ph /\ y e. B /\ A. x e. S y .<_ x ) -> y .<_ T ) |
||
| Assertion | posglbdg | |- ( ph -> ( G ` S ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posglbdg.l | |- .<_ = ( le ` K ) |
|
| 2 | posglbdg.b | |- ( ph -> B = ( Base ` K ) ) |
|
| 3 | posglbdg.g | |- ( ph -> G = ( glb ` K ) ) |
|
| 4 | posglbdg.k | |- ( ph -> K e. Poset ) |
|
| 5 | posglbdg.s | |- ( ph -> S C_ B ) |
|
| 6 | posglbdg.t | |- ( ph -> T e. B ) |
|
| 7 | posglbdg.lb | |- ( ( ph /\ x e. S ) -> T .<_ x ) |
|
| 8 | posglbdg.gt | |- ( ( ph /\ y e. B /\ A. x e. S y .<_ x ) -> y .<_ T ) |
|
| 9 | eqid | |- ( ODual ` K ) = ( ODual ` K ) |
|
| 10 | 9 1 | oduleval | |- `' .<_ = ( le ` ( ODual ` K ) ) |
| 11 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 12 | 9 11 | odubas | |- ( Base ` K ) = ( Base ` ( ODual ` K ) ) |
| 13 | 2 12 | eqtrdi | |- ( ph -> B = ( Base ` ( ODual ` K ) ) ) |
| 14 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 15 | 9 14 | odulub | |- ( K e. Poset -> ( glb ` K ) = ( lub ` ( ODual ` K ) ) ) |
| 16 | 4 15 | syl | |- ( ph -> ( glb ` K ) = ( lub ` ( ODual ` K ) ) ) |
| 17 | 3 16 | eqtrd | |- ( ph -> G = ( lub ` ( ODual ` K ) ) ) |
| 18 | 9 | odupos | |- ( K e. Poset -> ( ODual ` K ) e. Poset ) |
| 19 | 4 18 | syl | |- ( ph -> ( ODual ` K ) e. Poset ) |
| 20 | vex | |- x e. _V |
|
| 21 | brcnvg | |- ( ( x e. _V /\ T e. B ) -> ( x `' .<_ T <-> T .<_ x ) ) |
|
| 22 | 20 6 21 | sylancr | |- ( ph -> ( x `' .<_ T <-> T .<_ x ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ x e. S ) -> ( x `' .<_ T <-> T .<_ x ) ) |
| 24 | 7 23 | mpbird | |- ( ( ph /\ x e. S ) -> x `' .<_ T ) |
| 25 | vex | |- y e. _V |
|
| 26 | 20 25 | brcnv | |- ( x `' .<_ y <-> y .<_ x ) |
| 27 | 26 | ralbii | |- ( A. x e. S x `' .<_ y <-> A. x e. S y .<_ x ) |
| 28 | 27 8 | syl3an3b | |- ( ( ph /\ y e. B /\ A. x e. S x `' .<_ y ) -> y .<_ T ) |
| 29 | brcnvg | |- ( ( T e. B /\ y e. _V ) -> ( T `' .<_ y <-> y .<_ T ) ) |
|
| 30 | 6 25 29 | sylancl | |- ( ph -> ( T `' .<_ y <-> y .<_ T ) ) |
| 31 | 30 | 3ad2ant1 | |- ( ( ph /\ y e. B /\ A. x e. S x `' .<_ y ) -> ( T `' .<_ y <-> y .<_ T ) ) |
| 32 | 28 31 | mpbird | |- ( ( ph /\ y e. B /\ A. x e. S x `' .<_ y ) -> T `' .<_ y ) |
| 33 | 10 13 17 19 5 6 24 32 | poslubdg | |- ( ph -> ( G ` S ) = T ) |