This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complete lattice". (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclat.b | |- B = ( Base ` K ) |
|
| isclat.u | |- U = ( lub ` K ) |
||
| isclat.g | |- G = ( glb ` K ) |
||
| Assertion | isclat | |- ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclat.b | |- B = ( Base ` K ) |
|
| 2 | isclat.u | |- U = ( lub ` K ) |
|
| 3 | isclat.g | |- G = ( glb ` K ) |
|
| 4 | fveq2 | |- ( l = K -> ( lub ` l ) = ( lub ` K ) ) |
|
| 5 | 4 2 | eqtr4di | |- ( l = K -> ( lub ` l ) = U ) |
| 6 | 5 | dmeqd | |- ( l = K -> dom ( lub ` l ) = dom U ) |
| 7 | fveq2 | |- ( l = K -> ( Base ` l ) = ( Base ` K ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( l = K -> ( Base ` l ) = B ) |
| 9 | 8 | pweqd | |- ( l = K -> ~P ( Base ` l ) = ~P B ) |
| 10 | 6 9 | eqeq12d | |- ( l = K -> ( dom ( lub ` l ) = ~P ( Base ` l ) <-> dom U = ~P B ) ) |
| 11 | fveq2 | |- ( l = K -> ( glb ` l ) = ( glb ` K ) ) |
|
| 12 | 11 3 | eqtr4di | |- ( l = K -> ( glb ` l ) = G ) |
| 13 | 12 | dmeqd | |- ( l = K -> dom ( glb ` l ) = dom G ) |
| 14 | 13 9 | eqeq12d | |- ( l = K -> ( dom ( glb ` l ) = ~P ( Base ` l ) <-> dom G = ~P B ) ) |
| 15 | 10 14 | anbi12d | |- ( l = K -> ( ( dom ( lub ` l ) = ~P ( Base ` l ) /\ dom ( glb ` l ) = ~P ( Base ` l ) ) <-> ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 16 | df-clat | |- CLat = { l e. Poset | ( dom ( lub ` l ) = ~P ( Base ` l ) /\ dom ( glb ` l ) = ~P ( Base ` l ) ) } |
|
| 17 | 15 16 | elrab2 | |- ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |