This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolub.i | |- I = ( toInc ` F ) |
|
| ipolub.f | |- ( ph -> F e. V ) |
||
| ipolub.s | |- ( ph -> S C_ F ) |
||
| ipoglb.g | |- ( ph -> G = ( glb ` I ) ) |
||
| ipoglbdm.t | |- ( ph -> T = U. { x e. F | x C_ |^| S } ) |
||
| Assertion | ipoglbdm | |- ( ph -> ( S e. dom G <-> T e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.i | |- I = ( toInc ` F ) |
|
| 2 | ipolub.f | |- ( ph -> F e. V ) |
|
| 3 | ipolub.s | |- ( ph -> S C_ F ) |
|
| 4 | ipoglb.g | |- ( ph -> G = ( glb ` I ) ) |
|
| 5 | ipoglbdm.t | |- ( ph -> T = U. { x e. F | x C_ |^| S } ) |
|
| 6 | 1 | ipobas | |- ( F e. V -> F = ( Base ` I ) ) |
| 7 | 2 6 | syl | |- ( ph -> F = ( Base ` I ) ) |
| 8 | eqidd | |- ( ph -> ( le ` I ) = ( le ` I ) ) |
|
| 9 | eqid | |- ( le ` I ) = ( le ` I ) |
|
| 10 | 1 2 3 9 | ipoglblem | |- ( ( ph /\ w e. F ) -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> ( A. y e. S w ( le ` I ) y /\ A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) w ) ) ) ) |
| 11 | 1 | ipopos | |- I e. Poset |
| 12 | 11 | a1i | |- ( ph -> I e. Poset ) |
| 13 | 7 8 4 10 12 | glbeldm2d | |- ( ph -> ( S e. dom G <-> ( S C_ F /\ E. w e. F ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) ) ) |
| 14 | 3 13 | mpbirand | |- ( ph -> ( S e. dom G <-> E. w e. F ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) ) |
| 15 | 5 | ad2antrr | |- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> T = U. { x e. F | x C_ |^| S } ) |
| 16 | unilbeu | |- ( w e. F -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> w = U. { x e. F | x C_ |^| S } ) ) |
|
| 17 | 16 | biimpa | |- ( ( w e. F /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> w = U. { x e. F | x C_ |^| S } ) |
| 18 | 17 | adantll | |- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> w = U. { x e. F | x C_ |^| S } ) |
| 19 | 15 18 | eqtr4d | |- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> T = w ) |
| 20 | simplr | |- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> w e. F ) |
|
| 21 | 19 20 | eqeltrd | |- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> T e. F ) |
| 22 | 21 | ex | |- ( ( ph /\ w e. F ) -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) -> T e. F ) ) |
| 23 | simpr | |- ( ( ph /\ T e. F ) -> T e. F ) |
|
| 24 | unilbeu | |- ( T e. F -> ( ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) <-> T = U. { x e. F | x C_ |^| S } ) ) |
|
| 25 | 24 | biimparc | |- ( ( T = U. { x e. F | x C_ |^| S } /\ T e. F ) -> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 26 | 5 25 | sylan | |- ( ( ph /\ T e. F ) -> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 27 | sseq1 | |- ( w = T -> ( w C_ |^| S <-> T C_ |^| S ) ) |
|
| 28 | sseq2 | |- ( w = T -> ( z C_ w <-> z C_ T ) ) |
|
| 29 | 28 | imbi2d | |- ( w = T -> ( ( z C_ |^| S -> z C_ w ) <-> ( z C_ |^| S -> z C_ T ) ) ) |
| 30 | 29 | ralbidv | |- ( w = T -> ( A. z e. F ( z C_ |^| S -> z C_ w ) <-> A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 31 | 27 30 | anbi12d | |- ( w = T -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) ) |
| 32 | 22 23 26 31 | rspceb2dv | |- ( ph -> ( E. w e. F ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> T e. F ) ) |
| 33 | 14 32 | bitrd | |- ( ph -> ( S e. dom G <-> T e. F ) ) |