This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclatd.b | |- ( ph -> B = ( Base ` K ) ) |
|
| isclatd.u | |- ( ph -> U = ( lub ` K ) ) |
||
| isclatd.g | |- ( ph -> G = ( glb ` K ) ) |
||
| isclatd.k | |- ( ph -> K e. Poset ) |
||
| isclatd.1 | |- ( ( ph /\ s C_ B ) -> s e. dom U ) |
||
| isclatd.2 | |- ( ( ph /\ s C_ B ) -> s e. dom G ) |
||
| Assertion | isclatd | |- ( ph -> K e. CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclatd.b | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | isclatd.u | |- ( ph -> U = ( lub ` K ) ) |
|
| 3 | isclatd.g | |- ( ph -> G = ( glb ` K ) ) |
|
| 4 | isclatd.k | |- ( ph -> K e. Poset ) |
|
| 5 | isclatd.1 | |- ( ( ph /\ s C_ B ) -> s e. dom U ) |
|
| 6 | isclatd.2 | |- ( ( ph /\ s C_ B ) -> s e. dom G ) |
|
| 7 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 8 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 9 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 10 | biid | |- ( ( A. y e. t y ( le ` K ) x /\ A. z e. ( Base ` K ) ( A. y e. t y ( le ` K ) z -> x ( le ` K ) z ) ) <-> ( A. y e. t y ( le ` K ) x /\ A. z e. ( Base ` K ) ( A. y e. t y ( le ` K ) z -> x ( le ` K ) z ) ) ) |
|
| 11 | 7 8 9 10 4 | lubdm | |- ( ph -> dom ( lub ` K ) = { t e. ~P ( Base ` K ) | E! x e. ( Base ` K ) ( A. y e. t y ( le ` K ) x /\ A. z e. ( Base ` K ) ( A. y e. t y ( le ` K ) z -> x ( le ` K ) z ) ) } ) |
| 12 | ssrab2 | |- { t e. ~P ( Base ` K ) | E! x e. ( Base ` K ) ( A. y e. t y ( le ` K ) x /\ A. z e. ( Base ` K ) ( A. y e. t y ( le ` K ) z -> x ( le ` K ) z ) ) } C_ ~P ( Base ` K ) |
|
| 13 | 11 12 | eqsstrdi | |- ( ph -> dom ( lub ` K ) C_ ~P ( Base ` K ) ) |
| 14 | elpwi | |- ( s e. ~P B -> s C_ B ) |
|
| 15 | 14 5 | sylan2 | |- ( ( ph /\ s e. ~P B ) -> s e. dom U ) |
| 16 | 15 | ralrimiva | |- ( ph -> A. s e. ~P B s e. dom U ) |
| 17 | dfss3 | |- ( ~P B C_ dom U <-> A. s e. ~P B s e. dom U ) |
|
| 18 | 16 17 | sylibr | |- ( ph -> ~P B C_ dom U ) |
| 19 | 1 | pweqd | |- ( ph -> ~P B = ~P ( Base ` K ) ) |
| 20 | 2 | dmeqd | |- ( ph -> dom U = dom ( lub ` K ) ) |
| 21 | 18 19 20 | 3sstr3d | |- ( ph -> ~P ( Base ` K ) C_ dom ( lub ` K ) ) |
| 22 | 13 21 | eqssd | |- ( ph -> dom ( lub ` K ) = ~P ( Base ` K ) ) |
| 23 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 24 | biid | |- ( ( A. y e. t x ( le ` K ) y /\ A. z e. ( Base ` K ) ( A. y e. t z ( le ` K ) y -> z ( le ` K ) x ) ) <-> ( A. y e. t x ( le ` K ) y /\ A. z e. ( Base ` K ) ( A. y e. t z ( le ` K ) y -> z ( le ` K ) x ) ) ) |
|
| 25 | 7 8 23 24 4 | glbdm | |- ( ph -> dom ( glb ` K ) = { t e. ~P ( Base ` K ) | E! x e. ( Base ` K ) ( A. y e. t x ( le ` K ) y /\ A. z e. ( Base ` K ) ( A. y e. t z ( le ` K ) y -> z ( le ` K ) x ) ) } ) |
| 26 | ssrab2 | |- { t e. ~P ( Base ` K ) | E! x e. ( Base ` K ) ( A. y e. t x ( le ` K ) y /\ A. z e. ( Base ` K ) ( A. y e. t z ( le ` K ) y -> z ( le ` K ) x ) ) } C_ ~P ( Base ` K ) |
|
| 27 | 25 26 | eqsstrdi | |- ( ph -> dom ( glb ` K ) C_ ~P ( Base ` K ) ) |
| 28 | 14 6 | sylan2 | |- ( ( ph /\ s e. ~P B ) -> s e. dom G ) |
| 29 | 28 | ralrimiva | |- ( ph -> A. s e. ~P B s e. dom G ) |
| 30 | dfss3 | |- ( ~P B C_ dom G <-> A. s e. ~P B s e. dom G ) |
|
| 31 | 29 30 | sylibr | |- ( ph -> ~P B C_ dom G ) |
| 32 | 3 | dmeqd | |- ( ph -> dom G = dom ( glb ` K ) ) |
| 33 | 31 19 32 | 3sstr3d | |- ( ph -> ~P ( Base ` K ) C_ dom ( glb ` K ) ) |
| 34 | 27 33 | eqssd | |- ( ph -> dom ( glb ` K ) = ~P ( Base ` K ) ) |
| 35 | 7 9 23 | isclat | |- ( K e. CLat <-> ( K e. Poset /\ ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) ) ) |
| 36 | 35 | biimpri | |- ( ( K e. Poset /\ ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) ) -> K e. CLat ) |
| 37 | 4 22 34 36 | syl12anc | |- ( ph -> K e. CLat ) |