This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isacs | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( C e. ( ACS ` X ) -> X e. _V ) |
|
| 2 | elfvex | |- ( C e. ( Moore ` X ) -> X e. _V ) |
|
| 3 | 2 | adantr | |- ( ( C e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) -> X e. _V ) |
| 4 | fveq2 | |- ( x = X -> ( Moore ` x ) = ( Moore ` X ) ) |
|
| 5 | pweq | |- ( x = X -> ~P x = ~P X ) |
|
| 6 | 5 5 | feq23d | |- ( x = X -> ( f : ~P x --> ~P x <-> f : ~P X --> ~P X ) ) |
| 7 | 5 | raleqdv | |- ( x = X -> ( A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) <-> A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) |
| 8 | 6 7 | anbi12d | |- ( x = X -> ( ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) <-> ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |
| 9 | 8 | exbidv | |- ( x = X -> ( E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) <-> E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |
| 10 | 4 9 | rabeqbidv | |- ( x = X -> { c e. ( Moore ` x ) | E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } = { c e. ( Moore ` X ) | E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } ) |
| 11 | df-acs | |- ACS = ( x e. _V |-> { c e. ( Moore ` x ) | E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } ) |
|
| 12 | fvex | |- ( Moore ` X ) e. _V |
|
| 13 | 12 | rabex | |- { c e. ( Moore ` X ) | E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } e. _V |
| 14 | 10 11 13 | fvmpt | |- ( X e. _V -> ( ACS ` X ) = { c e. ( Moore ` X ) | E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } ) |
| 15 | 14 | eleq2d | |- ( X e. _V -> ( C e. ( ACS ` X ) <-> C e. { c e. ( Moore ` X ) | E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } ) ) |
| 16 | eleq2 | |- ( c = C -> ( s e. c <-> s e. C ) ) |
|
| 17 | 16 | bibi1d | |- ( c = C -> ( ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) <-> ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) |
| 18 | 17 | ralbidv | |- ( c = C -> ( A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) <-> A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) |
| 19 | 18 | anbi2d | |- ( c = C -> ( ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) <-> ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |
| 20 | 19 | exbidv | |- ( c = C -> ( E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) <-> E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |
| 21 | 20 | elrab | |- ( C e. { c e. ( Moore ` X ) | E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } <-> ( C e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |
| 22 | 15 21 | bitrdi | |- ( X e. _V -> ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) ) |
| 23 | 1 3 22 | pm5.21nii | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ E. f ( f : ~P X --> ~P X /\ A. s e. ~P X ( s e. C <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) ) ) |