This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mremre | |- ( X e. V -> ( Moore ` X ) e. ( Moore ` ~P X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mresspw | |- ( a e. ( Moore ` X ) -> a C_ ~P X ) |
|
| 2 | velpw | |- ( a e. ~P ~P X <-> a C_ ~P X ) |
|
| 3 | 1 2 | sylibr | |- ( a e. ( Moore ` X ) -> a e. ~P ~P X ) |
| 4 | 3 | ssriv | |- ( Moore ` X ) C_ ~P ~P X |
| 5 | 4 | a1i | |- ( X e. V -> ( Moore ` X ) C_ ~P ~P X ) |
| 6 | ssidd | |- ( X e. V -> ~P X C_ ~P X ) |
|
| 7 | pwidg | |- ( X e. V -> X e. ~P X ) |
|
| 8 | intssuni2 | |- ( ( a C_ ~P X /\ a =/= (/) ) -> |^| a C_ U. ~P X ) |
|
| 9 | 8 | 3adant1 | |- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a C_ U. ~P X ) |
| 10 | unipw | |- U. ~P X = X |
|
| 11 | 9 10 | sseqtrdi | |- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a C_ X ) |
| 12 | elpw2g | |- ( X e. V -> ( |^| a e. ~P X <-> |^| a C_ X ) ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> ( |^| a e. ~P X <-> |^| a C_ X ) ) |
| 14 | 11 13 | mpbird | |- ( ( X e. V /\ a C_ ~P X /\ a =/= (/) ) -> |^| a e. ~P X ) |
| 15 | 6 7 14 | ismred | |- ( X e. V -> ~P X e. ( Moore ` X ) ) |
| 16 | n0 | |- ( a =/= (/) <-> E. b b e. a ) |
|
| 17 | intss1 | |- ( b e. a -> |^| a C_ b ) |
|
| 18 | 17 | adantl | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> |^| a C_ b ) |
| 19 | simpr | |- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> a C_ ( Moore ` X ) ) |
|
| 20 | 19 | sselda | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> b e. ( Moore ` X ) ) |
| 21 | mresspw | |- ( b e. ( Moore ` X ) -> b C_ ~P X ) |
|
| 22 | 20 21 | syl | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> b C_ ~P X ) |
| 23 | 18 22 | sstrd | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) ) /\ b e. a ) -> |^| a C_ ~P X ) |
| 24 | 23 | ex | |- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( b e. a -> |^| a C_ ~P X ) ) |
| 25 | 24 | exlimdv | |- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( E. b b e. a -> |^| a C_ ~P X ) ) |
| 26 | 16 25 | biimtrid | |- ( ( X e. V /\ a C_ ( Moore ` X ) ) -> ( a =/= (/) -> |^| a C_ ~P X ) ) |
| 27 | 26 | 3impia | |- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> |^| a C_ ~P X ) |
| 28 | simp2 | |- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> a C_ ( Moore ` X ) ) |
|
| 29 | 28 | sselda | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b e. a ) -> b e. ( Moore ` X ) ) |
| 30 | mre1cl | |- ( b e. ( Moore ` X ) -> X e. b ) |
|
| 31 | 29 30 | syl | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b e. a ) -> X e. b ) |
| 32 | 31 | ralrimiva | |- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> A. b e. a X e. b ) |
| 33 | elintg | |- ( X e. V -> ( X e. |^| a <-> A. b e. a X e. b ) ) |
|
| 34 | 33 | 3ad2ant1 | |- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> ( X e. |^| a <-> A. b e. a X e. b ) ) |
| 35 | 32 34 | mpbird | |- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> X e. |^| a ) |
| 36 | simp12 | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> a C_ ( Moore ` X ) ) |
|
| 37 | 36 | sselda | |- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> c e. ( Moore ` X ) ) |
| 38 | simpl2 | |- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b C_ |^| a ) |
|
| 39 | intss1 | |- ( c e. a -> |^| a C_ c ) |
|
| 40 | 39 | adantl | |- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> |^| a C_ c ) |
| 41 | 38 40 | sstrd | |- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b C_ c ) |
| 42 | simpl3 | |- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> b =/= (/) ) |
|
| 43 | mreintcl | |- ( ( c e. ( Moore ` X ) /\ b C_ c /\ b =/= (/) ) -> |^| b e. c ) |
|
| 44 | 37 41 42 43 | syl3anc | |- ( ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) /\ c e. a ) -> |^| b e. c ) |
| 45 | 44 | ralrimiva | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> A. c e. a |^| b e. c ) |
| 46 | intex | |- ( b =/= (/) <-> |^| b e. _V ) |
|
| 47 | elintg | |- ( |^| b e. _V -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) ) |
|
| 48 | 46 47 | sylbi | |- ( b =/= (/) -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) ) |
| 49 | 48 | 3ad2ant3 | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> ( |^| b e. |^| a <-> A. c e. a |^| b e. c ) ) |
| 50 | 45 49 | mpbird | |- ( ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) /\ b C_ |^| a /\ b =/= (/) ) -> |^| b e. |^| a ) |
| 51 | 27 35 50 | ismred | |- ( ( X e. V /\ a C_ ( Moore ` X ) /\ a =/= (/) ) -> |^| a e. ( Moore ` X ) ) |
| 52 | 5 15 51 | ismred | |- ( X e. V -> ( Moore ` X ) e. ( Moore ` ~P X ) ) |