This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mrerintcl | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> ( X i^i |^| S ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rint0 | |- ( S = (/) -> ( X i^i |^| S ) = X ) |
|
| 2 | 1 | adantl | |- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S = (/) ) -> ( X i^i |^| S ) = X ) |
| 3 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S = (/) ) -> X e. C ) |
| 5 | 2 4 | eqeltrd | |- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S = (/) ) -> ( X i^i |^| S ) e. C ) |
| 6 | simp2 | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S C_ C ) |
|
| 7 | mresspw | |- ( C e. ( Moore ` X ) -> C C_ ~P X ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> C C_ ~P X ) |
| 9 | 6 8 | sstrd | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S C_ ~P X ) |
| 10 | simp3 | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> S =/= (/) ) |
|
| 11 | rintn0 | |- ( ( S C_ ~P X /\ S =/= (/) ) -> ( X i^i |^| S ) = |^| S ) |
|
| 12 | 9 10 11 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> ( X i^i |^| S ) = |^| S ) |
| 13 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> |^| S e. C ) |
|
| 14 | 12 13 | eqeltrd | |- ( ( C e. ( Moore ` X ) /\ S C_ C /\ S =/= (/) ) -> ( X i^i |^| S ) e. C ) |
| 15 | 14 | 3expa | |- ( ( ( C e. ( Moore ` X ) /\ S C_ C ) /\ S =/= (/) ) -> ( X i^i |^| S ) e. C ) |
| 16 | 5 15 | pm2.61dane | |- ( ( C e. ( Moore ` X ) /\ S C_ C ) -> ( X i^i |^| S ) e. C ) |