This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismred2.ss | |- ( ph -> C C_ ~P X ) |
|
| ismred2.in | |- ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) |
||
| Assertion | ismred2 | |- ( ph -> C e. ( Moore ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismred2.ss | |- ( ph -> C C_ ~P X ) |
|
| 2 | ismred2.in | |- ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) |
|
| 3 | eqid | |- (/) = (/) |
|
| 4 | rint0 | |- ( (/) = (/) -> ( X i^i |^| (/) ) = X ) |
|
| 5 | 3 4 | ax-mp | |- ( X i^i |^| (/) ) = X |
| 6 | 0ss | |- (/) C_ C |
|
| 7 | 0ex | |- (/) e. _V |
|
| 8 | sseq1 | |- ( s = (/) -> ( s C_ C <-> (/) C_ C ) ) |
|
| 9 | 8 | anbi2d | |- ( s = (/) -> ( ( ph /\ s C_ C ) <-> ( ph /\ (/) C_ C ) ) ) |
| 10 | inteq | |- ( s = (/) -> |^| s = |^| (/) ) |
|
| 11 | 10 | ineq2d | |- ( s = (/) -> ( X i^i |^| s ) = ( X i^i |^| (/) ) ) |
| 12 | 11 | eleq1d | |- ( s = (/) -> ( ( X i^i |^| s ) e. C <-> ( X i^i |^| (/) ) e. C ) ) |
| 13 | 9 12 | imbi12d | |- ( s = (/) -> ( ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) <-> ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C ) ) ) |
| 14 | 7 13 2 | vtocl | |- ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C ) |
| 15 | 6 14 | mpan2 | |- ( ph -> ( X i^i |^| (/) ) e. C ) |
| 16 | 5 15 | eqeltrrid | |- ( ph -> X e. C ) |
| 17 | simp2 | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ C ) |
|
| 18 | 1 | 3ad2ant1 | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> C C_ ~P X ) |
| 19 | 17 18 | sstrd | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ ~P X ) |
| 20 | simp3 | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> s =/= (/) ) |
|
| 21 | rintn0 | |- ( ( s C_ ~P X /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s ) |
| 23 | 2 | 3adant3 | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) e. C ) |
| 24 | 22 23 | eqeltrrd | |- ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C ) |
| 25 | 1 16 24 | ismred | |- ( ph -> C e. ( Moore ` X ) ) |