This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrccss.v | |- V = ( Base ` W ) |
|
| mrccss.o | |- ._|_ = ( ocv ` W ) |
||
| mrccss.c | |- C = ( ClSubSp ` W ) |
||
| mrccss.f | |- F = ( mrCls ` C ) |
||
| Assertion | mrccss | |- ( ( W e. PreHil /\ S C_ V ) -> ( F ` S ) = ( ._|_ ` ( ._|_ ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrccss.v | |- V = ( Base ` W ) |
|
| 2 | mrccss.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | mrccss.c | |- C = ( ClSubSp ` W ) |
|
| 4 | mrccss.f | |- F = ( mrCls ` C ) |
|
| 5 | 1 3 | cssmre | |- ( W e. PreHil -> C e. ( Moore ` V ) ) |
| 6 | 5 | adantr | |- ( ( W e. PreHil /\ S C_ V ) -> C e. ( Moore ` V ) ) |
| 7 | 1 2 | ocvocv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 8 | 1 2 | ocvss | |- ( ._|_ ` S ) C_ V |
| 9 | 8 | a1i | |- ( S C_ V -> ( ._|_ ` S ) C_ V ) |
| 10 | 1 3 2 | ocvcss | |- ( ( W e. PreHil /\ ( ._|_ ` S ) C_ V ) -> ( ._|_ ` ( ._|_ ` S ) ) e. C ) |
| 11 | 9 10 | sylan2 | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( ._|_ ` S ) ) e. C ) |
| 12 | 4 | mrcsscl | |- ( ( C e. ( Moore ` V ) /\ S C_ ( ._|_ ` ( ._|_ ` S ) ) /\ ( ._|_ ` ( ._|_ ` S ) ) e. C ) -> ( F ` S ) C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 13 | 6 7 11 12 | syl3anc | |- ( ( W e. PreHil /\ S C_ V ) -> ( F ` S ) C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 14 | 4 | mrcssid | |- ( ( C e. ( Moore ` V ) /\ S C_ V ) -> S C_ ( F ` S ) ) |
| 15 | 5 14 | sylan | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( F ` S ) ) |
| 16 | 2 | ocv2ss | |- ( S C_ ( F ` S ) -> ( ._|_ ` ( F ` S ) ) C_ ( ._|_ ` S ) ) |
| 17 | 2 | ocv2ss | |- ( ( ._|_ ` ( F ` S ) ) C_ ( ._|_ ` S ) -> ( ._|_ ` ( ._|_ ` S ) ) C_ ( ._|_ ` ( ._|_ ` ( F ` S ) ) ) ) |
| 18 | 15 16 17 | 3syl | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( ._|_ ` S ) ) C_ ( ._|_ ` ( ._|_ ` ( F ` S ) ) ) ) |
| 19 | 4 | mrccl | |- ( ( C e. ( Moore ` V ) /\ S C_ V ) -> ( F ` S ) e. C ) |
| 20 | 5 19 | sylan | |- ( ( W e. PreHil /\ S C_ V ) -> ( F ` S ) e. C ) |
| 21 | 2 3 | cssi | |- ( ( F ` S ) e. C -> ( F ` S ) = ( ._|_ ` ( ._|_ ` ( F ` S ) ) ) ) |
| 22 | 20 21 | syl | |- ( ( W e. PreHil /\ S C_ V ) -> ( F ` S ) = ( ._|_ ` ( ._|_ ` ( F ` S ) ) ) ) |
| 23 | 18 22 | sseqtrrd | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( ._|_ ` S ) ) C_ ( F ` S ) ) |
| 24 | 13 23 | eqssd | |- ( ( W e. PreHil /\ S C_ V ) -> ( F ` S ) = ( ._|_ ` ( ._|_ ` S ) ) ) |