This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one isnot usually an algebraic closure system df-acs : consider the Hilbert space of sequences NN --> RR with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssmre.v | |- V = ( Base ` W ) |
|
| cssmre.c | |- C = ( ClSubSp ` W ) |
||
| Assertion | cssmre | |- ( W e. PreHil -> C e. ( Moore ` V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssmre.v | |- V = ( Base ` W ) |
|
| 2 | cssmre.c | |- C = ( ClSubSp ` W ) |
|
| 3 | 1 2 | cssss | |- ( x e. C -> x C_ V ) |
| 4 | velpw | |- ( x e. ~P V <-> x C_ V ) |
|
| 5 | 3 4 | sylibr | |- ( x e. C -> x e. ~P V ) |
| 6 | 5 | a1i | |- ( W e. PreHil -> ( x e. C -> x e. ~P V ) ) |
| 7 | 6 | ssrdv | |- ( W e. PreHil -> C C_ ~P V ) |
| 8 | 1 2 | css1 | |- ( W e. PreHil -> V e. C ) |
| 9 | intss1 | |- ( z e. x -> |^| x C_ z ) |
|
| 10 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 11 | 10 | ocv2ss | |- ( |^| x C_ z -> ( ( ocv ` W ) ` z ) C_ ( ( ocv ` W ) ` |^| x ) ) |
| 12 | 10 | ocv2ss | |- ( ( ( ocv ` W ) ` z ) C_ ( ( ocv ` W ) ` |^| x ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
| 13 | 9 11 12 | 3syl | |- ( z e. x -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
| 14 | 13 | ad2antll | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
| 15 | simprl | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) |
|
| 16 | 14 15 | sseldd | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
| 17 | simpl2 | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> x C_ C ) |
|
| 18 | simprr | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> z e. x ) |
|
| 19 | 17 18 | sseldd | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> z e. C ) |
| 20 | 10 2 | cssi | |- ( z e. C -> z = ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
| 21 | 19 20 | syl | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> z = ( ( ocv ` W ) ` ( ( ocv ` W ) ` z ) ) ) |
| 22 | 16 21 | eleqtrrd | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) /\ z e. x ) ) -> y e. z ) |
| 23 | 22 | expr | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) -> ( z e. x -> y e. z ) ) |
| 24 | 23 | alrimiv | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) -> A. z ( z e. x -> y e. z ) ) |
| 25 | vex | |- y e. _V |
|
| 26 | 25 | elint | |- ( y e. |^| x <-> A. z ( z e. x -> y e. z ) ) |
| 27 | 24 26 | sylibr | |- ( ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) /\ y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) ) -> y e. |^| x ) |
| 28 | 27 | ex | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> ( y e. ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) -> y e. |^| x ) ) |
| 29 | 28 | ssrdv | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ |^| x ) |
| 30 | simp1 | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> W e. PreHil ) |
|
| 31 | intssuni | |- ( x =/= (/) -> |^| x C_ U. x ) |
|
| 32 | 31 | 3ad2ant3 | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> |^| x C_ U. x ) |
| 33 | simp2 | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> x C_ C ) |
|
| 34 | 7 | 3ad2ant1 | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> C C_ ~P V ) |
| 35 | 33 34 | sstrd | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> x C_ ~P V ) |
| 36 | sspwuni | |- ( x C_ ~P V <-> U. x C_ V ) |
|
| 37 | 35 36 | sylib | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> U. x C_ V ) |
| 38 | 32 37 | sstrd | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> |^| x C_ V ) |
| 39 | 1 2 10 | iscss2 | |- ( ( W e. PreHil /\ |^| x C_ V ) -> ( |^| x e. C <-> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ |^| x ) ) |
| 40 | 30 38 39 | syl2anc | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> ( |^| x e. C <-> ( ( ocv ` W ) ` ( ( ocv ` W ) ` |^| x ) ) C_ |^| x ) ) |
| 41 | 29 40 | mpbird | |- ( ( W e. PreHil /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
| 42 | 7 8 41 | ismred | |- ( W e. PreHil -> C e. ( Moore ` V ) ) |