This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ocv2ss.o | |- ._|_ = ( ocv ` W ) |
|
| Assertion | ocv2ss | |- ( T C_ S -> ( ._|_ ` S ) C_ ( ._|_ ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocv2ss.o | |- ._|_ = ( ocv ` W ) |
|
| 2 | sstr2 | |- ( T C_ S -> ( S C_ ( Base ` W ) -> T C_ ( Base ` W ) ) ) |
|
| 3 | idd | |- ( T C_ S -> ( x e. ( Base ` W ) -> x e. ( Base ` W ) ) ) |
|
| 4 | ssralv | |- ( T C_ S -> ( A. y e. S ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) -> A. y e. T ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
|
| 5 | 2 3 4 | 3anim123d | |- ( T C_ S -> ( ( S C_ ( Base ` W ) /\ x e. ( Base ` W ) /\ A. y e. S ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) -> ( T C_ ( Base ` W ) /\ x e. ( Base ` W ) /\ A. y e. T ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 8 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 9 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 10 | 6 7 8 9 1 | elocv | |- ( x e. ( ._|_ ` S ) <-> ( S C_ ( Base ` W ) /\ x e. ( Base ` W ) /\ A. y e. S ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 11 | 6 7 8 9 1 | elocv | |- ( x e. ( ._|_ ` T ) <-> ( T C_ ( Base ` W ) /\ x e. ( Base ` W ) /\ A. y e. T ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 12 | 5 10 11 | 3imtr4g | |- ( T C_ S -> ( x e. ( ._|_ ` S ) -> x e. ( ._|_ ` T ) ) ) |
| 13 | 12 | ssrdv | |- ( T C_ S -> ( ._|_ ` S ) C_ ( ._|_ ` T ) ) |