This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | |- K = ( toHL ` W ) |
|
| thlval.c | |- C = ( ClSubSp ` W ) |
||
| thlval.i | |- I = ( toInc ` C ) |
||
| thlval.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | thlval | |- ( W e. V -> K = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | |- K = ( toHL ` W ) |
|
| 2 | thlval.c | |- C = ( ClSubSp ` W ) |
|
| 3 | thlval.i | |- I = ( toInc ` C ) |
|
| 4 | thlval.o | |- ._|_ = ( ocv ` W ) |
|
| 5 | elex | |- ( W e. V -> W e. _V ) |
|
| 6 | fveq2 | |- ( h = W -> ( ClSubSp ` h ) = ( ClSubSp ` W ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( h = W -> ( ClSubSp ` h ) = C ) |
| 8 | 7 | fveq2d | |- ( h = W -> ( toInc ` ( ClSubSp ` h ) ) = ( toInc ` C ) ) |
| 9 | 8 3 | eqtr4di | |- ( h = W -> ( toInc ` ( ClSubSp ` h ) ) = I ) |
| 10 | fveq2 | |- ( h = W -> ( ocv ` h ) = ( ocv ` W ) ) |
|
| 11 | 10 4 | eqtr4di | |- ( h = W -> ( ocv ` h ) = ._|_ ) |
| 12 | 11 | opeq2d | |- ( h = W -> <. ( oc ` ndx ) , ( ocv ` h ) >. = <. ( oc ` ndx ) , ._|_ >. ) |
| 13 | 9 12 | oveq12d | |- ( h = W -> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) ) |
| 14 | df-thl | |- toHL = ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) ) |
|
| 15 | ovex | |- ( I sSet <. ( oc ` ndx ) , ._|_ >. ) e. _V |
|
| 16 | 13 14 15 | fvmpt | |- ( W e. _V -> ( toHL ` W ) = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) ) |
| 17 | 1 16 | eqtrid | |- ( W e. _V -> K = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) ) |
| 18 | 5 17 | syl | |- ( W e. V -> K = ( I sSet <. ( oc ` ndx ) , ._|_ >. ) ) |