This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvss.v | |- V = ( Base ` W ) |
|
| ocvss.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvocv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvss.v | |- V = ( Base ` W ) |
|
| 2 | ocvss.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | 1 2 | ocvss | |- ( ._|_ ` S ) C_ V |
| 4 | 3 | a1i | |- ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) -> ( ._|_ ` S ) C_ V ) |
| 5 | simpr | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ V ) |
|
| 6 | 5 | sselda | |- ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) -> x e. V ) |
| 7 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 8 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 9 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 10 | 1 7 8 9 2 | ocvi | |- ( ( y e. ( ._|_ ` S ) /\ x e. S ) -> ( y ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) |
| 11 | 10 | ancoms | |- ( ( x e. S /\ y e. ( ._|_ ` S ) ) -> ( y ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) |
| 12 | 11 | adantll | |- ( ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) /\ y e. ( ._|_ ` S ) ) -> ( y ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) |
| 13 | simplll | |- ( ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) /\ y e. ( ._|_ ` S ) ) -> W e. PreHil ) |
|
| 14 | 4 | sselda | |- ( ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) /\ y e. ( ._|_ ` S ) ) -> y e. V ) |
| 15 | 6 | adantr | |- ( ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) /\ y e. ( ._|_ ` S ) ) -> x e. V ) |
| 16 | 8 7 1 9 | iporthcom | |- ( ( W e. PreHil /\ y e. V /\ x e. V ) -> ( ( y ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) <-> ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 17 | 13 14 15 16 | syl3anc | |- ( ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) /\ y e. ( ._|_ ` S ) ) -> ( ( y ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) <-> ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 18 | 12 17 | mpbid | |- ( ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) /\ y e. ( ._|_ ` S ) ) -> ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) |
| 19 | 18 | ralrimiva | |- ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) -> A. y e. ( ._|_ ` S ) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) |
| 20 | 1 7 8 9 2 | elocv | |- ( x e. ( ._|_ ` ( ._|_ ` S ) ) <-> ( ( ._|_ ` S ) C_ V /\ x e. V /\ A. y e. ( ._|_ ` S ) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 21 | 4 6 19 20 | syl3anbrc | |- ( ( ( W e. PreHil /\ S C_ V ) /\ x e. S ) -> x e. ( ._|_ ` ( ._|_ ` S ) ) ) |
| 22 | 21 | ex | |- ( ( W e. PreHil /\ S C_ V ) -> ( x e. S -> x e. ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 23 | 22 | ssrdv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |